Part Number Hot Search : 
GC70F AD790 AN6961 1N6107E3 CEU83A3 AV53R4 01100 GM3036
Product Description
Full Text Search
 

To Download PIC24FJ32GB002-EML Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PIC24FJ64GB004 Family Data Sheet
28/44-Pin, 16-Bit, Flash Microcontrollers with USB On-The-Go (OTG) and nanoWatt XLP Technology
2010 Microchip Technology Inc.
DS39940D
Note the following details of the code protection feature on Microchip devices: * * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-439-1
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
DS39940D-page 2
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
28/44-Pin, 16-Bit, Flash Microcontrollers with USB On-The-Go (OTG) and nanoWatt XLP Technology
Universal Serial Bus Features:
* USB v2.0 On-The-Go (OTG) Compliant * Dual Role Capable - can act as either Host or Peripheral * Low-Speed (1.5 Mb/s) and Full-Speed (12 Mb/s) USB Operation in Host mode * Full-Speed USB Operation in Device mode * High-Precision PLL for USB * 0.25% Accuracy using Internal Oscillator - No External Crystal Required * Internal Voltage Boost Assist for USB Bus Voltage Generation * Interface for Off-Chip Charge Pump for USB Bus Voltage Generation * Supports up to 32 Endpoints (16 bidirectional): - USB module can use any RAM location on the device as USB endpoint buffers * On-Chip USB Transceiver * Interface for Off-Chip USB Transceiver * Supports Control, Interrupt, Isochronous and Bulk Transfers * On-Chip Pull-up and Pull-Down Resistors
Power Management Modes:
* Selectable Power Management modes with nanoWatt XLP Technology for Extremely Low Power: - Deep Sleep mode allows near total power-down (20 nA typical and 500 nA with RTCC or WDT), along with the ability to wake-up on external triggers or self-wake on programmable WDT or RTCC alarm - Extreme low-power DSBOR for Deep Sleep, LPBOR for all other modes - Sleep mode shuts down peripherals and core for substantial power reduction, fast wake-up - Idle mode shuts down the CPU and peripherals for significant power reduction, down to 4.5 A typical - Doze mode enables CPU clock to run slower than peripherals - Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction during Run mode down to 15 A typical
Special Microcontroller Features:
* * * * * Operating Voltage Range of 2.0V to 3.6V Self-Reprogrammable under Software Control 5.5V Tolerant Input (digital pins only) High-Current Sink/Source (18 mA/18 mA) on All I/O Pins Flash Program Memory: - 10,000 erase/write cycle endurance (minimum) - 20-year data retention minimum - Selectable write protection boundary Fail-Safe Clock Monitor Operation: - Detects clock failure and switches to on-chip FRC oscillator On-Chip 2.5V Regulator Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) Two Flexible Watchdog Timers (WDT) for Reliable Operation: - Standard programmable WDT for normal operation - Extreme low-power WDT with programmable period of 2 ms to 26 days for Deep Sleep mode In-Circuit Serial ProgrammingTM (ICSPTM) and In-Circuit Debug (ICD) via 2 Pins JTAG Boundary Scan Support
High-Performance CPU:
* Modified Harvard Architecture * Up to 16 MIPS Operation @ 32 MHz * 8 MHz Internal Oscillator with 0.25% Typical Accuracy: - 96 MHz PLL - Multiple divide options * 17-Bit x 17-Bit Single-Cycle Hardware Fractional/integer Multiplier * 32-Bit by 16-Bit Hardware Divider * 16 x 16-Bit Working Register Array * C Compiler Optimized Instruction Set Architecture: - 76 base instructions - Flexible addressing modes * Linear Program Memory Addressing up to 12 Mbytes * Linear Data Memory Addressing up to 64 Kbytes * Two Address Generation Units for Separate Read and Write Addressing of Data Memory
* * * *
* *
Program Memory (Bytes)
Remappable Peripherals Compare/PWM Output Comparators 10-Bit A/D (ch) Remappable Pins UART w/ IrDA(R) Capture Input USB OTG Y Y Y Y PMP/PSP SRAM (Bytes) CTMU Y Y Y Y RTCC Y Y Y Y I2CTM 2 2 2 2
Timers 16-Bit
32GB002 64GB002 32GB004 64GB004
28 28 44 44
32K 64K 32K 64K
8K 8K 8K 8K
15 15 25 25
5 5 5 5
5 5 5 5
5 5 5 5
2 2 2 2
SPI 2 2 2 2
PIC24FJ Device
Pins
9 9 13 13
3 3 3 3
Y Y Y Y
2010 Microchip Technology Inc.
DS39940D-page 3
PIC24FJ64GB004 FAMILY
Analog Features:
* 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter: - 500 ksps conversion rate - Conversion available during Sleep and Idle * Three Analog Comparators with Programmable Input/Output Configuration * Charge Time Measurement Unit (CTMU): - Supports capacitive touch sensing for touch screens and capacitive switches - Provides high-resolution time measurement and simple temperature sensing * Hardware Real-Time Clock/Calendar (RTCC): - Provides clock, calendar and alarm functions - Functions even in Deep Sleep mode * Two 3-Wire/4-Wire SPI modules (support 4 Frame modes) with 8-Level FIFO Buffer * Two I2CTM modules support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing * Two UART modules: - Supports RS-485, RS-232 and LIN/J2602 - On-chip hardware encoder/decoder for IrDA(R) - Auto-wake-up on Start bit - Auto-Baud Detect (ABD) - 4-level deep FIFO buffer * Five 16-Bit Timers/Counters with Programmable Prescaler * Five 16-Bit Capture Inputs, each with a Dedicated Time Base * Five 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base * Programmable, 32-Bit Cyclic Redundancy Check (CRC) Generator * Configurable Open-Drain Outputs on Digital I/O Pins * Up to 3 External Interrupt Sources
Peripheral Features:
* Peripheral Pin Select: - Allows independent I/O mapping of many peripherals - Up to 25 available pins (44-pin devices) - Continuous hardware integrity checking and safety interlocks prevent unintentional configuration changes * 8-Bit Parallel Master Port (PMP/PSP): - Up to 16-bit multiplexed addressing, with up to 11 dedicated address pins on 44-pin devices - Programmable polarity on control lines - Supports legacy Parallel Slave Port
Pin Diagrams
28-Pin SPDIP, SOIC, SSOP(1)
MCLR PGED3/AN0/C3INC/VREF+/ASDA1(2)/RP5/PMD7/CTED1/VBUSVLD/VCMPST1/CN2/RA0 PGEC3/AN1/C3IND/VREF-/ASCL1(2)/RP6/PMD6/CTED2/SESSVLD/VCMPST2/CN3/RA1 PGED1/AN2/C2INB/DPH/RP0/PMD0/CN4/RB0 PGEC1/AN3/C2INA/DMH/RP1/PMD1/CN5/RB1 AN4/C1INB/DPLN/SDA2/RP2/PMD2/CN6/RB2 AN5/C1INA/DMLN/RTCC/SCL2/RP3/PMWR/CN7/RB3 VSS OSCI/CLKI/C1IND/PMCS1/CN30/RA2 OSCO/CLKO/PMA0/CN29/RA3 SOSCI/C2IND/RP4/PMBE/CN1/RB4 SOSCO/SCLKI/T1CK/C2INC/PMA1/CN0/RA4 VDD TMS/USBID/CN27/RB5
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
VDD VSS AN9/C3INA/VBUSCHG/RP15/VBUSST/CN11/RB15 AN10/C3INB/CVREF/VCPCON/VBUSON/RP14/CN12/RB14 AN11/C1INC/RP13/PMRD/REFO/SESSEND/CN13/RB13 VUSB PGEC2/D-/VMIO/RP11/CN15/RB11 PGED2/D+/VPIO/RP10/CN16/RB10 VCAP/VDDCORE DISVREG TDO/SDA1/RP9/PMD3/RCV/CN21/RB9 TCK/USBOEN/SCL1/RP8/PMD4/CN22/RB8 TDI/RP7/PMD5/INT0/CN23/RB7 VBUS
PIC24FJXXGB002
Legend: Note 1: 2:
RPn represents remappable peripheral pins. Gray shading indicates 5.5V tolerant input pins. Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set.
DS39940D-page 4
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Pin Diagrams
28-Pin QFN(1,3)
PGEC3/AN1/C3IND/VREF-/ASCL1(2)/RP6/PMD6/CTED2/SESSVLD/VCMPST2/CN3/RA1 PGED3/AN0/C3INC/VREF+/ASDA1(2)/RP5/PMD7/CTED1/VBUSVLD/VCMPST1/CN2/RA0 MCLR
PGED1/AN2/C2INB/DPH/RP0/PMD0/CN4/RB0 PGEC1/AN3/C2INA/DMH/RP1/PMD1/CN5/RB1 AN4/C1INB/DPLN/SDA2/RP2/PMD2/CN6/RB2 AN5/C1INA/DMLN/RTCC/SCL2/RP3/PMWR/CN7/RB3 VSS OSCI/CLKI/C1IND/PMCS1/CN30/RA2 OSCO/CLKO/PMA0/CN29/RA3
28 27 26 25 24 23 22 1 21 2 20 3 19 4 PIC24FJXXGB00218 5 17 6 16 7 15 8 9 10 11 12 13 14
SOSCO/SCLKI/T1CK/C2INC/PMA1/CN0/RA4 VDD TMS/USBID//CN27/RB5 VBUS SOSCI/C2IND/RP4/PMBE/CN1/RB4 TDI/RP7/PMD5/INT0/CN23/RB7 TCK/USBOEN/SCL1/RP8/PMD4/CN22/RB8
VDD VSS AN9/C3INA/VBUSCHG/RP15/VBUSST/CN11/RB15 AN10/C3INB/CVREF/VCPCON/VBUSON/RP14/CN12/RB14
AN11/C1INC/RP13/PMRD/REFO/SESSEND/CN13/RB13 VUSB PGEC2/D-/VMIO/RP11/CN15/RB11 PGED2/D+/VPIO/RP10/CN16/RB10 VCAP/VDDCORE DISVREG TDO/SDA1/RP9/PMD3/RCV/CN21/RB9
Legend: Note 1: 2: 3:
RPn represents remappable peripheral pins. Gray shading indicates 5.5V tolerant input pins. Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set. The back pad on QFN devices should be connected to VSS.
2010 Microchip Technology Inc.
DS39940D-page 5
PIC24FJ64GB004 FAMILY
Pin Diagrams
44-PIN TQFP,
USBOEN/SCL1/RP8/PMD4/CN22/RB8 RP7/PMD5/INT0/CN23/RB7 VBUS CN27/USBID/RB5 VDD VSS RP21/PMA3/CN26/RC5 RP20/PMA4/CN25/RC4 AN12/RP19/PMBE/CN28/RC3 TDI/PMA9/RA9 SOSCO/SCLKI/T1CK/C2INC/CN0/RA4 44 43 42 41 40 39 38 37 36 35 34
44-Pin QFN(1,3)
Legend: Note 1: 2: 3:
RPn represents remappable peripheral pins. Gray shading indicates 5.5V tolerant input pins. Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set. The back pad on QFN devices should be connected to VSS.
TMS/PMA10/RA10 TCK/PMA7/RA7 AN10/C3INB/CVREF/VCPCON/VBUSON/RP14/CN12/RB14 AN9/C3INA/VBUSCHG/RP15/VBUSST/CN11/RB15 AVSS AVDD MCLR PGED3/AN0/C3INC/VREF+/ASDA1(2)/RP5/PMD7/CTED1/VBUSVLD/VCMPST1/CN2/RA0 PGEC3/AN1/C3IND/VREF-/ASCL1(2)/RP6/PMD6/CTED2/SESSVLD/VCMPST2/CN3/RA1 PGED1/AN2/C2INB/DPH/RP0/PMD0/CN4/RB0 PGEC1/AN3/C2INA/DMH/RP1/PMD1/CN5/RB1
12 13 14 15 16 17 18 19 20 21 22
SDA1/RP9/PMD3/RCV/CN21/RB9 RP22/PMA1/CN18/RC6 RP23/PMA0/CN17/RC7 RP24/PMA5/CN20/RC8 RP25/PMA6/CN19/RC9 DISVREG VCAP/VDDCORE PGED2/D+/VPIO/RP10/CN16/RB10 PGEC2/D-/VMIO/RP11/CN15/RB11 VUSB AN11/C1INC/RP13/REFO/PMRD/SESSEND/CN13/RB13
1 2 3 4 5 6 7 8 9 10 11
PIC24FJXXGB004
33 32 31 30 29 28 27 26 25 24 23
SOSCI/C2IND/RP4/CN1/RB4 TDO/PMA8/RA8 OSCO/CLKO/CN29/RA3 OSCI/CLKI/C1IND/PMCS1/CN30/RA2 VSS VDD AN8/RP18/PMA2/CN10/RC2 AN7/RP17/CN9/RC1 AN6/RP16/CN8/RC0 AN5/C1INA/DMLN/RTCC/SCL2/RP3/PMWR/CN7/RB3 AN4/C1INB/DPLN/SDA2/RP2/PMD2/CN6/RB2
DS39940D-page 6
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Table of Contents
1.0 Device Overview .......................................................................................................................................................................... 9 2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 19 3.0 CPU ........................................................................................................................................................................................... 25 4.0 Memory Organization ................................................................................................................................................................. 31 5.0 Flash Program Memory.............................................................................................................................................................. 55 6.0 Resets ........................................................................................................................................................................................ 63 7.0 Interrupt Controller ..................................................................................................................................................................... 69 8.0 Oscillator Configuration ............................................................................................................................................................ 107 9.0 Power-Saving Features............................................................................................................................................................ 117 10.0 I/O Ports ................................................................................................................................................................................... 127 11.0 Timer1 ...................................................................................................................................................................................... 149 12.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 151 13.0 Input Capture with Dedicated Timers ....................................................................................................................................... 157 14.0 Output Compare with Dedicated Timers .................................................................................................................................. 161 15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 171 16.0 Inter-Integrated Circuit (I2CTM) ................................................................................................................................................. 181 17.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 189 18.0 Universal Serial Bus with On-The-Go Support (USB OTG) ..................................................................................................... 197 19.0 Parallel Master Port (PMP)....................................................................................................................................................... 231 20.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 241 21.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator ........................................................................................ 253 22.0 10-Bit High-Speed A/D Converter ............................................................................................................................................ 259 23.0 Triple Comparator Module........................................................................................................................................................ 269 24.0 Comparator Voltage Reference................................................................................................................................................ 273 25.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 275 26.0 Special Features ...................................................................................................................................................................... 279 27.0 Development Support............................................................................................................................................................... 293 28.0 Instruction Set Summary .......................................................................................................................................................... 297 29.0 Electrical Characteristics .......................................................................................................................................................... 305 30.0 Packaging Information.............................................................................................................................................................. 327 Appendix A: Revision History............................................................................................................................................................. 341 The Microchip Web Site ..................................................................................................................................................................... 349 Customer Change Notification Service .............................................................................................................................................. 349 Customer Support .............................................................................................................................................................................. 349 Reader Response .............................................................................................................................................................................. 350 Product Identification System ............................................................................................................................................................ 351
2010 Microchip Technology Inc.
DS39940D-page 7
PIC24FJ64GB004 FAMILY
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: * Microchip's Worldwide Web site; http://www.microchip.com * Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
DS39940D-page 8
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
1.0 DEVICE OVERVIEW
This document contains device-specific information for the following devices: * PIC24FJ32GB002 * PIC24FJ64GB002 * PIC24FJ32GB004 * PIC24FJ64GB004 * Instruction-Based Power-Saving Modes: There are three instruction-based power-saving modes: - Idle Mode - The core is shut down while leaving the peripherals active. - Sleep Mode - The core and peripherals that require the system clock are shut down, leaving the peripherals active that use their own clock or the clock from other devices. - Deep Sleep Mode - The core, peripherals (except RTCC and DSWDT), Flash and SRAM are shut down for optimal current savings to extend battery life for portable applications.
This family expands on the existing line of Microchip`s 16-bit microcontrollers, combining an expanded peripheral feature set and enhanced computational performance with a new connectivity option: USB On-The-Go (OTG). The PIC24FJ64GB004 family provides a new platform for high-performance USB applications which may need more than an 8-bit platform, but do not require the power of a digital signal processor.
1.1.3
OSCILLATOR OPTIONS AND FEATURES
1.1
1.1.1
Core Features
16-BIT ARCHITECTURE
All of the devices in the PIC24FJ64GB004 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include: * Two Crystal modes using crystals or ceramic resonators. * Two External Clock modes offering the option of a divide-by-2 clock output. * A Fast Internal RC Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz. * A Phase Lock Loop (PLL) frequency multiplier available to the external oscillator modes and the FRC Oscillator, which allows clock speeds of up to 32 MHz. * A separate Low-Power Internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications. The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor. This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.
Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC(R) digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as: * 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces * Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data) * A 16-element working register array with built-in software stack support * A 17 x 17 hardware multiplier with support for integer math * Hardware support for 32 by 16-bit division * An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as `C' * Operational performance up to 16 MIPS
1.1.2
POWER-SAVING TECHNOLOGY
All of the devices in the PIC24FJ64GB004 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include: * On-the-Fly Clock Switching: The device clock can be changed under software control to the Timer1 source or the internal, Low-Power Internal RC Oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs. * Doze Mode Operation: When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
1.1.4
EASY MIGRATION
Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger device. The PIC24F family is pin-compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30 devices. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.
2010 Microchip Technology Inc.
DS39940D-page 9
PIC24FJ64GB004 FAMILY
1.2 USB On-The-Go
The PIC24FJ64GB004 family of devices introduces USB On-The-Go functionality on a single chip to lower pin count Microchip devices. This module provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform. In addition to USB host functionality, PIC24FJ64GB004 family devices provide a true single chip USB solution, including an on-chip transceiver and a voltage boost generator for sourcing bus power during host operations. * Parallel Master/Enhanced Parallel Slave Port: One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit and 16-bit data transfers with up to 12 external address lines in Master modes. * Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for the use of the core application.
1.4
Details on Individual Family Members
Devices in the PIC24FJ64GB004 family are available in 28-pin and 44-pin packages. The general block diagram for all devices is shown in Figure 1-1. The devices are differentiated from each other in several ways: * Flash Program Memory: - PIC24FJ32GB0 devices - 32 Kbytes - PIC24FJ64GB0 devices - 64 Kbytes * Available I/O Pins and Ports: - 28-pin devices - 19 pins on two ports - 44-pin devices - 33 pins on three ports * Available Interrupt-on-Change Notification (ICN) Inputs: - 28-pin devices - 19 - 44-pin devices - 29 * Available Remappable Pins: - 28-pin devices - 15 pins - 44-pin devices - 25 pins * Available PMP Address Pins: - 28-pin devices - 3 pins - 44-pin devices - 12 pins * Available A/D Input Channels: - 28-pin devices - 9 pins - 44-pin devices - 12 pins All other features for devices in this family are identical. These are summarized in Table 1-1. A list of the pin features available on the PIC24FJ64GB004 family devices, sorted by function, is shown in Table 1-2. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.
1.3
Other Special Features
* Peripheral Pin Select: The Peripheral Pin Select feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins. * Communications: The PIC24FJ64GB004 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are two independent I2CTM modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select (PPS) feature, two independent UARTs with built-in IrDA(R) encoder/decoders and two SPI modules. * Analog Features: All members of the PIC24FJ64GB004 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations. * CTMU Interface: This module provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
DS39940D-page 10
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GB004 FAMILY
Features Operating Frequency Program Memory (bytes) Program Memory (instructions) Data Memory (bytes) Interrupt Sources (soft vectors/ NMI traps) I/O Ports Total I/O Pins Remappable Pins Timers: Total Number (16-bit) 32-Bit (from paired 16-bit timers) Input Capture Channels Output Compare/PWM Channels Input Change Notification Interrupt Serial Communications: UART SPI (3-wire/4-wire) I2CTM Parallel Communications (PMP/PSP) JTAG Boundary Scan 10-Bit Analog-to-Digital Module (input channels) Analog Comparators CTMU Interface Resets (and delays) 9 3 Yes POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock) 76 Base Instructions, Multiple Addressing Mode Variations 28-Pin QFN, SOIC, SSOP and SPDIP Peripherals are accessible through remappable pins. 44-Pin QFN and TQFP 2(1) 2(1) 2 Yes Yes 13 19 5(1) 2 5(1) 5(1) 29 Ports A and B 19 15 32K 11,008 64K 22,016 8,192 45 (41/4) Ports A, B, C 33 25 PIC24FJ32GB002 PIC24FJ64GB002 PIC24FJ32GB004 PIC24FJ64GB004 DC - 32 MHz 32K 11,008 64K 22,016
Instruction Set Packages Note 1:
2010 Microchip Technology Inc.
DS39940D-page 11
PIC24FJ64GB004 FAMILY
FIGURE 1-1: PIC24FJ64GB004 FAMILY GENERAL BLOCK DIAGRAM
Data Bus
16 8 PSV & Table Data Access Control Block 16 16 Data Latch 23 PCH PCL Program Counter Repeat Stack Control Control Logic Logic Data RAM Address Latch 16 16 Read AGU Write AGU PORTB (14 I/O) PORTA(1) (9 I/O)
Interrupt Controller
23 Address Latch Program Memory Data Latch
PORTC(1) (10 I/O)
Address Bus
24 Inst Latch Inst Register Instruction Decode & Control OSCO/CLKO OSCI/CLKI Timing Generation FRC/LPRC Oscillators Precision Band Gap Reference DISVREG Voltage Regulator Control Signals Power-up Timer Oscillator Start-up Timer Power-on Reset Watchdog Timer BOR and LVD(2) Literal Data
EA MUX 16 16
16
RP(1) RP0:RP25
Divide Support 17 x 17 Multiplier
16 x 16 W Reg Array
REFO
16-Bit ALU 16
VDDCORE/VCAP
VDD, VSS
MCLR
Timer1
Timer2/3(3)
Timer4/5(3)
RTCC
10-Bit ADC
Comparators(3)
USB OTG
PMP/PSP PWM/OC 1-5(3) SPI 1/2(3)
IC 1-5(3) Note 1: 2: 3:
ICNs(1)
I2C 1/2
UART 1/2(3)
CTMU
Not all I/O pins or features are implemented on all device pinout configurations. See Table 1-2 for specific implementations by pin count. BOR functionality is provided when the on-board voltage regulator is enabled. These peripheral I/Os are only accessible through remappable pins.
DS39940D-page 12
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 2 3 4 5 6 7 -- -- -- 26 25 24 -- 3 2 -- -- 7 6 24 9 5 4 12 11 26 25 2 3 9 10 28-Pin QFN 27 28 1 2 3 4 -- -- -- 23 22 21 -- 28 27 -- -- 4 3 21 6 2 1 9 8 23 22 27 28 6 7 44-Pin QFN/TQFP 19 20 21 22 23 24 25 26 27 15 14 11 36 20 19 17 16 24 23 11 30 22 21 34 33 15 14 19 20 30 31 I/O Input Buffer Description
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 ASCL1 ASDA1 AVDD AVSS C1INA C1INB C1INC C1IND C2INA C2INB C2INC C2IND C3INA C3INB C3INC C3IND CLKI CLKO Legend:
I I I I I I I I I I I I I I/O I/O P P I I I I I I I I I I I I I O
ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA I2C I2C -- -- ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA ANA --
A/D Analog Inputs.
Alternate I2C1 Synchronous Serial Clock Input/Output. Alternate I2C1 Synchronous Serial Data Input/Output. Positive Supply for Analog modules. Ground Reference for Analog modules. Comparator 1 Input A. Comparator 1 Input B. Comparator 1 Input C. Comparator 1 Input D. Comparator 2 Input A. Comparator 2 Input B. Comparator 2 Input C. Comparator 2 Input D. Comparator 3 Input A. Comparator 3 Input B. Comparator 3 Input C. Comparator 3 Input D. Main Clock Input Connection. System Clock Output.
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
2010 Microchip Technology Inc.
DS39940D-page 13
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 12 11 2 3 4 5 6 7 -- -- -- 26 25 24 22 21 -- -- -- -- 18 17 16 -- -- 14 -- 10 9 2 3 25 21 22 5 7 4 6 19 28-Pin QFN 9 8 27 28 1 2 3 4 -- -- -- 23 22 21 19 18 -- -- -- -- 15 14 13 -- -- 11 -- 7 6 27 28 22 18 19 2 4 1 3 16 44-Pin QFN/TQFP 34 33 19 20 21 22 23 24 25 26 27 15 14 11 9 8 3 2 5 4 1 44 43 37 38 41 36 31 30 19 20 14 8 9 22 24 21 23 6 I/O Input Buffer Description
CN0 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 CN12 CN13 CN15 CN16 CN17 CN18 CN19 CN20 CN21 CN22 CN23 CN25 CN26 CN27 CN28 CN29 CN30 CTED1 CTED2 CVREF D+ DDMH DMLN DPH DPLN DISVREG Legend:
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I O I/O I/O O O O O I
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ANA ANA -- -- -- -- -- -- -- ST
Interrupt-on-Change Inputs.
CTMU External Edge Input 1. CTMU External Edge Input 2. Comparator Voltage Reference Output. USB Differential Plus Line (internal transceiver). USB Differential Minus Line (internal transceiver). D- External Pull-up Control Output. D- External Pull-down Control Output. D+ External Pull-up Control Output. D+ External Pull-down Control Output. Voltage Regulator Disable.
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
DS39940D-page 14
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 16 1 9 10 5 4 22 21 3 2 10 12 -- -- -- -- -- -- -- -- -- 9 11 4 5 6 18 17 16 3 2 24 7 28-Pin QFN 13 26 6 7 2 1 19 18 28 27 7 9 -- -- -- -- -- -- -- -- -- 6 8 1 2 3 15 14 13 28 27 21 4 44-Pin QFN/TQFP 43 18 30 31 22 21 9 8 20 19 3 2 27 38 37 4 5 13 32 35 12 30 36 21 22 23 1 44 43 20 19 11 24 I/O Input Buffer Description
INT0 MCLR OSCI OSCO PGEC1 PGED1 PGEC2 PGED2 PGEC3 PGED3 PMA0 PMA1 PMA2 PMA3 PMA4 PMA5 PMA6 PMA7 PMA8 PMA9 PMA10 PMCS1 PMBE PMD0 PMD1 PMD2 PMD3 PMD4 PMD5 PMD6 PMD7 PMRD PMWR Legend:
I I I O I/O I/O I/O I/O I/O I/O I/O I/O O O O O O O O O O I/O O I/O I/O I/O I/O I/O I/O I/O I/O O O
ST ST ANA ANA ST ST ST ST ST ST ST ST -- -- -- -- -- -- -- -- --
External Interrupt Input. Master Clear (device Reset) Input. This line is brought low to cause a Reset. Main Oscillator Input Connection. Main Oscillator Output Connection. In-Circuit Debugger/Emulator/ICSPTM Programming Clock. In-Circuit Debugger/Emulator/ICSP Programming Data. In-Circuit Debugger/Emulator/ICSP Programming Clock. In-Circuit Debugger/Emulator/ICSP Programming Data. In-Circuit Debugger/Emulator/ICSP Programming Clock. In-Circuit Debugger/Emulator/ICSP Programming Data. Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes). Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes). Parallel Master Port Address (Demultiplexed Master modes).
ST/TTL Parallel Master Port Chip Select 1 Strobe/Address Bit 15. -- Parallel Master Port Byte Enable Strobe. ST/TTL Parallel Master Port Data (Demultiplexed Master mode) or ST/TTL Address/Data (Multiplexed Master modes). ST/TTL ST/TTL ST/TTL ST/TTL ST/TTL ST/TTL -- -- Parallel Master Port Read Strobe. Parallel Master Port Write Strobe.
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
2010 Microchip Technology Inc.
DS39940D-page 15
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 2 3 9 10 12 -- -- -- -- 4 5 6 7 11 14 16 17 18 21 22 24 25 26 -- -- -- -- -- -- -- -- -- -- 18 24 28-Pin QFN 27 28 6 7 9 -- -- -- -- 1 2 3 4 8 11 13 14 15 18 19 21 22 23 -- -- -- -- -- -- -- -- -- -- 15 21 44-Pin QFN/TQFP 19 20 30 31 34 13 32 35 12 21 22 23 24 33 41 43 44 1 8 9 11 14 15 25 26 27 36 37 38 2 3 4 5 1 11 I/O Input Buffer Description
RA0 RA1 RA2 RA3 RA4 RA7 RA8 RA9 RA10 RB0 RB1 RB2 RB3 RB4 RB5 RB7 RB8 RB9 RB10 RB11 RB13 RB14 RB15 RC0 RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RCV REFO Legend:
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I O
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST --
PORTA Digital I/O.
PORTB Digital I/O.
PORTC Digital I/O.
USB Receive Input (from external transceiver). Reference Clock Output.
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
DS39940D-page 16
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 4 5 6 7 11 2 3 16 17 18 21 22 24 25 26 -- -- -- -- -- -- -- -- -- -- 7 24 3 17 7 18 6 11 12 12 17 16 18 14 14 17 28-Pin QFN 1 2 3 4 8 27 28 13 14 15 18 19 21 22 23 -- -- -- -- -- -- -- -- -- -- 4 21 28 14 4 15 3 8 9 9 14 13 15 11 11 14 44-Pin QFN/TQFP 21 22 23 24 33 19 20 43 44 1 8 9 11 14 15 25 26 27 36 37 38 2 3 4 5 24 11 20 44 24 1 23 33 34 34 13 35 32 12 41 44 I/O Input Buffer Description
RP0 RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP10 RP11 RP13 RP14 RP15 RP16 RP17 RP18 RP19 RP20 RP21 RP22 RP23 RP24 RP25 RTCC SESSEND SESSVLD SCL1 SCL2 SDA1 SDA2 SOSCI SOSCO T1CK TCK TDI TDO TMS USBID USBOEN Legend:
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O O I I I/O I/O I/O I/O I O I I I O I I O
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST -- ST ST I2C I2C I2C IC ANA ANA ST ST ST -- ST ST --
2
Remappable Peripheral (input or output).
Real-Time Clock Alarm/Seconds Pulse Output. USB VBUS Session End Status Input. USB VBUS Session Valid Status Input. I2C1 Synchronous Serial Clock Input/Output. I2C2 Synchronous Serial Clock Input/Output. I2C1 Data Input/Output. I2C2 Data Input/Output. Secondary Oscillator/Timer1 Clock Input. Secondary Oscillator/Timer1 Clock Output. Timer1 Clock Input. JTAG Test Clock Input. JTAG Test Data Input. JTAG Test Data Output. JTAG Test Mode Select Input. USB OTG ID (OTG mode only). USB Output Enable Control (for external transceiver).
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
2010 Microchip Technology Inc.
DS39940D-page 17
PIC24FJ64GB004 FAMILY
TABLE 1-2: PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Pin Number Function 28-Pin SPDIP/ SOIC/SSOP 15 26 25 26 2 20 25 13, 28 20 22 21 3 2 8, 27 23 28-Pin QFN 12 23 22 23 27 17 22 10, 25 17 19 18 28 27 5, 24 20 44-Pin QFN/TQFP 42 15 14 15 19 7 14 28, 40 7 9 8 20 19 29, 39 10 I/O Input Buffer Description
VBUS VBUSCHG VBUSON VBUSST VBUSVLD VCAP VCPCON VDD VDDCORE VMIO VPIO VREFVREF+ VSS VUSB Legend:
P O O I I P O P P I/O I/O I I P P
-- -- -- ANA ST -- -- -- -- ST ST ANA ANA -- --
USB Voltage, Host mode (5V). USB External VBUS Control Output USB OTG External Charge Pump Control. USB OTG Internal Charge Pump Feedback Control. USB VBUS Valid Status Input. External Filter Capacitor Connection (regulator enabled). USB OTG VBUS PWM/Charge Output. Positive Supply for Peripheral Digital Logic and I/O Pins. Positive Supply for Microcontroller Core Logic (regulator disabled). USB Differential Minus Input/Output (external transceiver). USB Differential Plus Input/Output (external transceiver). A/D and Comparator Reference Voltage (low) Input. A/D and Comparator Reference Voltage (high) Input. Ground Reference for Logic and I/O Pins. USB Voltage (3.3V).
TTL = TTL input buffer ANA = Analog level input/output
ST = Schmitt Trigger input buffer I2CTM = I2C/SMBus input buffer
DS39940D-page 18
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS
Basic Connection Requirements
FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS
C2(2) VDD
VDD VSS
2.1
Getting started with the PIC24FJ64GB004 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development. The following pins must always be connected: * All VDD and VSS pins (see Section 2.2 "Power Supply Pins") * All AVDD and AVSS pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins") * MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin") * ENVREG/DISVREG and VCAP/VDDCORE pins (PIC24FJ devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)") These pins must also be connected if they are being used in the end application: * PGECx/PGEDx pins used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes (see Section 2.5 "ICSP Pins") * OSCI and OSCO pins when an external oscillator source is used (see Section 2.6 "External Oscillator Pins") Additionally, the following pins may be required: * VREF+/VREF- pins used when external voltage reference for analog modules is implemented Note: The AVDD and AVSS pins must always be connected, regardless of whether any of the analog modules are being used.
R1 R2
MCLR
(1) (1)
(EN/DIS)VREG VCAP/VDDCORE
C1 PIC24FXXXX C6(2)
VSS VDD VDD
C7
C3(2)
VSS AVDD AVSS VDD VSS
C5(2)
C4(2)
Key (all values are recommendations): C1 through C6: 0.1 F, 20V ceramic C7: 10 F, 6.3V or greater, tantalum or ceramic R1: 10 k R2: 100 to 470 Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of ENVREG/DISVREG pin connections. The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
2:
The minimum mandatory connections are shown in Figure 2-1.
2010 Microchip Technology Inc.
DS39940D-page 19
PIC24FJ64GB004 FAMILY
2.2
2.2.1
Power Supply Pins
DECOUPLING CAPACITORS
2.3
Master Clear (MCLR) Pin
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. Consider the following criteria when using decoupling capacitors: * Value and type of capacitor: A 0.1 F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended. * Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm). * Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 F to 0.001 F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 F in parallel with 0.001 F). * Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.
The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements. During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations. Any components associated with the MCLR pin should be placed within 0.25 inch (6 mm) of the pin.
FIGURE 2-2:
VDD R1
EXAMPLE OF MCLR PIN CONNECTIONS
R2 JP C1
MCLR PIC24FXXXX
2.2.2
TANK CAPACITORS
Note 1:
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 F to 47 F.
R1 10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. R2 470 will limit any current flowing into MCLR from the external capacitor, C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.
2:
DS39940D-page 20
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
2.4 Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)
This section applies only to PIC24FJ devices with an on-chip voltage regulator.
ESR ()
FIGURE 2-3:
FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP
Note:
10
1
The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used: * For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator * For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator Refer to Section 26.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator. When the regulator is enabled, a low-ESR (<5) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must use a capacitor of 10 F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices. The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 29.0 "Electrical Characteristics" for additional information. When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 29.0 "Electrical Characteristics" for information on VDD and VDDCORE.
0.1
0.01
0.001
0.01
0.1
1 10 100 Frequency (MHz)
1000 10,000
Note:
Data for Murata GRM21BF50J106ZE01 shown. Measurements at 25C, 0V DC bias.
2.5
ICSP Pins
The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100. Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool. For more information on available Microchip development tools connection requirements, refer to Section 27.0 "Development Support".
2010 Microchip Technology Inc.
DS39940D-page 21
PIC24FJ64GB004 FAMILY
2.6 External Oscillator Pins
FIGURE 2-4:
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 8.0 "Oscillator Configuration" for details). The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground. In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall times and other similar noise). For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com): * AN826, "Crystal Oscillator Basics and Crystal Selection for rfPICTM and PICmicro(R) Devices" * AN849, "Basic PICmicro(R) Oscillator Design" * AN943, "Practical PICmicro(R) Oscillator Analysis and Design" * AN949, "Making Your Oscillator Work"
SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT
Single-Sided and In-line Layouts:
Copper Pour (tied to ground) Primary Oscillator Crystal DEVICE PINS
Primary Oscillator C1 C2
OSCI OSCO GND SOSCO
Secondary Oscillator Crystal
SOSC I
Sec Oscillator: C1
Sec Oscillator: C2
Fine-Pitch (Dual-Sided) Layouts:
Top Layer Copper Pour (tied to ground) Bottom Layer Copper Pour (tied to ground) OSCO C2 GND Oscillator Crystal C1 OSCI
DEVICE PINS
DS39940D-page 22
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
2.7 Configuration of Analog and Digital Pins During ICSP Operations
If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows: * For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time. * For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time. When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.
If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers. All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to Section 10.2 "Configuring Analog Port Pins" for more specific information. The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.
2.8
Unused I/Os
Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k to 10 k resistor to VSS on unused pins and drive the output to logic low.
2010 Microchip Technology Inc.
DS39940D-page 23
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 24
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
3.0
Note:
CPU
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 2. "CPU" (DS39703).
For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle. A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle. The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete, but are interruptible at any cycle boundary. The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels. A block diagram of the CPU is shown in Figure 3-1.
The PIC24F CPU has a 16-bit (data), modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point. PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported either directly or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.
3.1
Programmer's Model
The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.
2010 Microchip Technology Inc.
DS39940D-page 25
PIC24FJ64GB004 FAMILY
FIGURE 3-1:
PSV & Table Data Access Control Block Interrupt Controller 8 23 23 PCH PCL Program Counter Loop Stack Control Control Logic Logic Data RAM Address Latch 16 RAGU WAGU 16 Data Bus 16 16 Data Latch 16
PIC24F CPU CORE BLOCK DIAGRAM
23
Address Latch
Program Memory Address Bus Data Latch 24 ROM Latch 16 Literal Data 16 EA MUX
Instruction Decode & Control
Instruction Reg
Control Signals to Various Blocks
Hardware Multiplier Divide Support
16 x 16 W Register Array 16
16-Bit ALU 16
To Peripheral Modules
DS39940D-page 26
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 3-1:
W0 through W15 PC SR SPLIM TBLPAG PSVPAG RCOUNT CORCON
CPU CORE REGISTERS
Description Working Register Array 23-Bit Program Counter ALU STATUS Register Stack Pointer Limit Value Register Table Memory Page Address Register Program Space Visibility Page Address Register Repeat Loop Counter Register CPU Control Register
Register(s) Name
FIGURE 3-2:
PROGRAMMER'S MODEL
15 0 W0 (WREG) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 Frame Pointer Stack Pointer 0 Stack Pointer Limit Value Register Program Counter Table Memory Page Address Register Program Space Visibility Page Address Register Repeat Loop Counter Register Working/Address Registers
Divider Working Registers
Multiplier Registers
SPLIM 22 PC 7 TBLPAG 7 PSVPAG 15 RCOUNT 15 SRH SRL
0 0 0 0
0
0
0 ALU STATUS Register (SR)
-- -- -- -- -- -- -- DC
IPL 2 1 0 RA N OV Z C
15
0 CPU Control Register (CORCON)
-- -- -- -- -- -- -- -- -- -- -- -- IPL3 PSV -- --
Registers or bits shaded for PUSH.S and POP.S instructions.
2010 Microchip Technology Inc.
DS39940D-page 27
PIC24FJ64GB004 FAMILY
3.2 CPU Control Registers
SR: ALU STATUS REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 DC bit 8 R/W-0(1) IPL1
(2)
REGISTER 3-1:
U-0 -- bit 15 R/W-0(1) IPL2 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-9 bit 8
(2)
R/W-0(1) IPL0
(2)
R-0 RA
R/W-0 N
R/W-0 OV
R/W-0 Z
R/W-0 C bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2) 111 = CPU interrupt priority level is 7 (15); user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress N: ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) OV: ALU Overflow bit 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred Z: ALU Zero bit 1 = An operation which effects the Z bit has set it at some time in the past 0 = The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result) C: ALU Carry/Borrow bit 1 = A carry out from the Most Significant bit of the result occurred 0 = No carry out from the Most Significant bit of the result occurred The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1. The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.
bit 7-5
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1: 2:
DS39940D-page 28
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 3-2:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-4 bit 3 C = Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- R/C-0 IPL3
(1)
CORCON: CPU CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 PSV U-0 -- U-0 -- bit 0
Unimplemented: Read as `0' IPL3: CPU Interrupt Priority Level Status bit(1) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less PSV: Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space Unimplemented: Read as `0' User interrupts are disabled when IPL3 = 1. The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.
bit 2
bit 1-0 Note 1:
3.3
Arithmetic Logic Unit (ALU)
The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.
3.3.1
MULTIPLIER
The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes: 1. 2. 3. 4. 5. 6. 7. 16-bit x 16-bit signed 16-bit x 16-bit unsigned 16-bit signed x 5-bit (literal) unsigned 16-bit unsigned x 16-bit unsigned 16-bit unsigned x 5-bit (literal) unsigned 16-bit unsigned x 16-bit signed 8-bit unsigned x 8-bit unsigned
2010 Microchip Technology Inc.
DS39940D-page 29
PIC24FJ64GB004 FAMILY
3.3.2 DIVIDER 3.3.3 MULTI-BIT SHIFT SUPPORT
The divide block supports signed and unsigned integer divide operations with the following data sizes: 1. 2. 3. 4. 32-bit signed/16-bit signed divide 32-bit unsigned/16-bit unsigned divide 16-bit signed/16-bit signed divide 16-bit unsigned/16-bit unsigned divide The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination. A full summary of instructions that use the shift operation is provided below in Table 3-2.
The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.
TABLE 3-2:
Instruction ASR SL LSR
INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION
Description Arithmetic Shift Right Source Register by One or More Bits. Shift Left Source Register by One or More Bits. Logical Shift Right Source Register by One or More Bits.
DS39940D-page 30
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
4.0 MEMORY ORGANIZATION
As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution. from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces". User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory maps for the PIC24FJ64GB004 family of devices are shown in Figure 4-1.
4.1
Program Address Space
The program address memory space of the PIC24FJ64GB004 family devices is 4M instructions. The space is addressable by a 24-bit value derived
FIGURE 4-1:
PROGRAM SPACE MEMORY MAP FOR PIC24FJ64GB004 FAMILY DEVICES
PIC24FJ32GB00X
GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table User Flash Program Memory (11K instructions) User Memory Space User Flash Program Memory (22K instructions)
PIC24FJ64GB00X
GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table 000000h 000002h 000004h 0000FEh 000100h 000104h 0001FEh 000200h
Flash Config Words
0057FEh 005800h
Flash Config Words Unimplemented Read `0' Unimplemented Read `0'
00ABFEh 00AC00h
7FFFFFh 800000h
Reserved Configuration Memory Space
Reserved
Device Config Registers
Device Config Registers
F7FFFEh F80000h F8000Eh F80010h
Reserved
Reserved
DEVID (2)
DEVID (2)
FEFFFEh FF0000h FFFFFFh
Note:
Memory areas are not shown to scale.
2010 Microchip Technology Inc.
DS39940D-page 31
PIC24FJ64GB004 FAMILY
4.1.1 PROGRAM MEMORY ORGANIZATION 4.1.3 FLASH CONFIGURATION WORDS
The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2). Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space. In PIC24FJ64GB004 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ64GB004 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1. The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words do not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in Section 26.1 "Configuration Bits".
4.1.2
HARD MEMORY VECTORS
All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h. PIC24F devices also have two interrupt vector tables, located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".
TABLE 4-1:
FLASH CONFIGURATION WORDS FOR PIC24FJ64GB004 FAMILY DEVICES
Program Memory (Words) 11,008 22,016 Configuration Word Addresses 0057F8h: 0057FEh 00ABF8h: 00ABFEh
Device
PIC24FJ32GB0 PIC24FJ64GB0
FIGURE 4-2:
MSW Address 000001h 000003h 000005h 000007h
PROGRAM MEMORY ORGANIZATION
most significant word 23 00000000 00000000 00000000 00000000 Program Memory `Phantom' Byte (read as `0') Instruction Width 16 least significant word 8 0 000000h 000002h 000004h 000006h PC Address (LSW Address)
DS39940D-page 32
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
4.2 Data Address Space
The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the program space visibility area (see Section 4.3.3 "Reading Data from Program Memory Using Program Space Visibility"). PIC24FJ64GB004 family devices implement a total of 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.
4.2.1
DATA SPACE WIDTH
The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.
FIGURE 4-3:
DATA SPACE MEMORY MAP FOR PIC24FJ64GB004 FAMILY DEVICES
MSB Address 0001h 07FFh 0801h LSB Address 0000h 07FEh 0800h 1FFEh 2000h 27FEh 2800h Unimplemented Read as `0' SFR Space
MSB SFR Space Data RAM
LSB
Near Data Space
Implemented Data RAM
1FFFh 2001h 27FFh 2801h
7FFFh 8001h
7FFFh 8000h
Program Space Visibility Area
FFFFh
FFFEh
Note:
Data memory areas are not shown to scale.
2010 Microchip Technology Inc.
DS39940D-page 33
PIC24FJ64GB004 FAMILY
4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT
To maintain backward compatibility with PIC(R) devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word which contains the byte using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address. Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.
4.2.3
NEAR DATA SPACE
The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.
4.2.4
SFR SPACE
The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as `0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-27.
TABLE 4-2:
IMPLEMENTED REGIONS OF SFR DATA SPACE
SFR Space Address xx00 xx20 Core Timers I2 CTM -- -- PMP -- UART A/D/CTMU -- -- RTCC -- SPI -- -- -- CRC/Comp System/DS A/D Capture -- -- -- -- Comparators NVM/PMD -- -- -- -- xx40 xx60 ICN xx80 xxA0 Interrupts Compare -- -- USB -- PPS -- -- -- -- I/O -- -- -- -- -- xxC0 xxE0 -- --
000h 100h 200h 300h 400h 500h 600h 700h
Legend: -- = No implemented SFRs in this block
DS39940D-page 34
2010 Microchip Technology Inc.
TABLE 4-3:
File Name WREG0 WREG1 WREG2 WREG3 WREG4 WREG5 WREG6 WREG7 WREG8 WREG9 WREG10 WREG11 WREG12 WREG13 WREG14 WREG15 SPLIM PCL PCH TBLPAG PSVPAG RCOUNT SR CORCON DISICNT Legend: Addr 0000 0002 0004 0006 0008 000A 000C 000E 0010 0012 0014 0016 0018 001A 001C 001E 0020 002E 0030 0032 0034 0036 0042 0044 0052
CPU CORE REGISTERS MAP
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0800 xxxx 0000 Program Counter Register High Byte Table Memory Page Address Register Program Space Visibility Page Address Register 0000 0000 0000 xxxx IPL0 -- RA -- N IPL3 OV PSV Z -- C -- 0000 0000 xxxx
2010 Microchip Technology Inc. DS39940D-page 35
Working Register 0 Working Register 1 Working Register 2 Working Register 3 Working Register 4 Working Register 5 Working Register 6 Working Register 7 Working Register 8 Working Register 9 Working Register 10 Working Register 11 Working Register 12 Working Register 13 Working Register 14 Working Register 15 Stack Pointer Limit Value Register Program Counter Low Word Register -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Repeat Loop Counter Register -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- DC -- IPL2 -- IPL1 --
PIC24FJ64GB004 FAMILY
Disable Interrupts Counter Register
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-4:
File Addr Name CNEN1 0060 CNEN2 0062 CNPU2 006A Legend: Note 1:
ICN REGISTER MAP
Bit 15 Bit 14 -- CN30IE -- Bit 13 CN13IE CN29IE CN13PUE Bit 12 CN12IE CN28IE
(1)
DS39940D-page 36 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Bit 11 CN11IE CN27IE
Bit 10 CN10IE(1) CN26IE
(1)
Bit 9 CN9IE(1) CN25IE
(1)
Bit 8 CN8IE(1) -- --
Bit 7 CN7IE CN23IE CN7PUE
Bit 6 CN6IE CN22IE CN6PUE
Bit 5 CN5IE CN21IE CN5PUE
Bit 4 CN4IE CN20IE(1) CN4PUE
Bit 3 CN3IE CN19IE(1) CN3PUE
Bit 2 CN2IE CN18IE(1) CN2PUE
Bit 1 CN1IE CN17IE(1) CN1PUE
Bit 0 CN0IE CN16IE CN0PUE
All Resets 0000 0000 0000 0000
CN15IE -- --
CNPU1 0068 CN15PUE
CN12PUE
CN11PUE CN10PUE(1) CN9PUE(1) CN8PUE(1)
CN30PUE CN29PUE CN28PUE(1) CN27PUE CN26PUE(1) CN25PUE(1)
CN23PUE CN22PUE CN21PUE CN20PUE(1) CN19PUE(1) CN18PUE(1) CN17PUE(1) CN16PUE
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Unimplemented in 28-pin devices; read as `0'.
TABLE 4-5:
File Name Addr INTCON1 INTCON2 IFS0 IFS1 IFS2 IFS3 IFS4 IFS5 IEC0 IEC1 IEC2 IEC3 IEC4 IEC5 IPC0 IPC1 IPC2 IPC3 IPC4 IPC5 IPC6 IPC7 IPC8 IPC9 IPC10 IPC11 IPC12 IPC15 IPC16 IPC18 IPC19 IPC21 INTTREG 0080 0082 0084 0086 0088 008A 008C 008E 0094 0096 0098 009A 009C 009E 00A4 00A6 00A8 00AA 00AC 00AE 00B0 00B2 00B4 00B6 00B8 00BA 00BC 00C2 00C4 00C8 00CA 00CE 00E0
INTERRUPT CONTROLLER REGISTER MAP
Bit 15 NSTDIS ALTIVT -- U2TXIF -- -- -- -- -- U2TXIE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- CPUIRQ Bit 14 -- DISI -- U2RXIF -- RTCIF -- -- -- U2RXIE -- RTCIE -- -- T1IP2 T2IP2 -- CNIP2 -- T4IP2 U2TXIP2 -- IC5IP2 -- -- -- -- CRCIP2 -- -- -- -- Bit 13 -- -- AD1IF INT2IF PMPIF -- CTMUIF -- AD1IE INT2IE PMPIE -- CTMUIE -- T1IP1 T2IP1 -- CNIP1 -- T4IP1 U2TXIP1 -- IC5IP1 -- -- -- -- CRCIP1 -- -- -- VHOLD Bit 12 -- -- U1TXIF T5IF -- -- -- -- U1TXIE T5IE -- -- -- -- T1IP0 T2IP0 -- CNIP0 -- T4IP0 U2TXIP0 -- IC5IP0 -- -- -- -- CRCIP0 -- -- -- -- Bit 11 -- -- U1RXIF T4IF -- -- -- -- U1RXIE T4IE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ILR3 Bit 10 -- -- SPI1IF OC4IF -- -- -- -- SPI1IE OC4IE -- -- -- -- OC1IP2 OC2IP2 SPI1IP2 -- CMIP2 -- OC4IP2 -- IC4IP2 -- -- RTCIP2 -- -- ILR2 Bit 9 -- -- SPF1IF OC3IF OC5IF -- -- -- SPF1IE OC3IE OC5IE -- -- -- OC1IP1 OC2IP1 SPI1IP1 -- CMIP1 -- OC4IP1 -- IC4IP1 -- -- RTCIP1 -- -- ILR1 Bit 8 -- -- T3IF -- -- -- LVDIF -- T3IE -- -- -- LVDIE -- OC1IP0 OC2IP0 SPI1IP0 -- CMIP0 -- OC4IP0 -- IC4IP0 -- -- RTCIP0 -- -- ILR0 Bit 7 -- -- T2IF -- IC5IF -- -- -- T2IE -- IC5IE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 6 -- -- OC2IF -- IC4IF -- -- USB1IF OC2IE -- IC4IE -- -- USB1IE IC1IP2 IC2IP2 SPF1IP2 AD1IP2 -- OC3IP2 INT2IP2 SPI2IP2 IC3IP2 OC5IP2 PMPIP2 SI2C2IP2 -- U1ERIP2 -- -- Bit 5 -- -- IC2IF -- IC3IF -- -- -- IC2IE -- IC3IE -- -- -- IC1IP1 IC2IP1 SPF1IP1 AD1IP1 -- OC3IP1 INT2IP1 SPI2IP1 IC3IP1 OC5IP1 PMPIP1 SI2C2IP1 -- U1ERIP1 -- -- Bit 4 Bit 3 Bit 2 Bit 1 OSCFAIL INT1EP IC1IF MI2C1IF SPI2IF SI2C2IF U1ERIF -- IC1IE MI2C1IE SPI2IE SI2C2IE U1ERIE -- INT0IP1 -- T3IP1 U1TXIP1 INT1IP1 -- T5IP1 SPF2IP1 -- -- -- -- -- -- LVDIP1 -- -- Bit 0 -- INT0EP INT0IF SI2C1IF SPF2IF -- -- -- INT0IE SI2C1IE SPF2IE -- -- -- INT0IP0 -- T3IP0 U1TXIP0 INT1IP0 -- T5IP0 SPF2IP0 -- -- -- -- -- -- LVDIP0 -- -- All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 4444
2010 Microchip Technology Inc. DS39940D-page 37
MATHERR ADDRERR STKERR -- -- INT1IF -- -- -- -- -- INT1IE -- -- -- -- IC1IP0 IC2IP0 SPF1IP0 AD1IP0 -- OC3IP0 INT2IP0 SPI2IP0 IC3IP0 OC5IP0 PMPIP0 SI2C2IP0 -- U1ERIP0 -- -- -- T1IF CNIF -- -- CRCIF -- T1IE CNIE -- -- CRCIE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- INT2EP OC1IF CMIF -- MI2C2IF U2ERIF -- OC1IE CMIE -- MI2C2IE U2ERIE -- INT0IP2 -- T3IP2 U1TXIP2 INT1IP2 -- T5IP2 SPF2IP2 -- -- -- -- -- -- LVDIP2 -- --
PIC24FJ64GB004 FAMILY
4440 4444 0044 4444 0004 4440 4444 0044 4440 0040 0040 0440 0400 4440 0004 0040 0400 0000
U1RXIP2 U1RXIP1 U1RXIP0
MI2C1IP2 MI2C1IP1 MI2C1IP0
SI2C1IP2 SI2C1IP1 SI2C1IP0
U2RXIP2 U2RXIP1 U2RXIP0
MI2C2IP2 MI2C2IP1 MI2C2IP0 U2ERIP2 U2ERIP1 U2ERIP0
CTMUIP2 CTMUIP1 CTMUIP0
USB1IP2 USB1IP1 USB1IP0
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0
Legend:
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-6:
File Name TMR1 PR1 T1CON TMR2 TMR3HLD TMR3 PR2 PR3 T2CON T3CON TMR4 TMR5HLD TMR5 PR4 PR5 T4CON T5CON Legend: Addr 0100 0102 0104 0106 0108 010A 010C 010E 0110 0112 0114 0116 0118 011A 011C 011E 0120
TIMER REGISTER MAP
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 FFFF TGATE TCKPS1 TCKPS0 -- TSYNC TCS -- 0000 0000 0000 0000 FFFF FFFF TGATE TGATE TCKPS1 TCKPS1 TCKPS0 TCKPS0 T32 -- -- -- TCS TCS -- -- 0000 0000 0000 0000 0000 FFFF FFFF TGATE TGATE TCKPS1 TCKPS1 TCKPS0 TCKPS0 T32 -- -- -- TCS TCS -- -- 0000 0000
DS39940D-page 38 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Timer1 Register Timer1 Period Register TON -- TSIDL -- -- -- -- -- -- Timer2 Register Timer3 Holding Register (for 32-bit timer operations only) Timer3 Register Timer2 Period Register Timer3 Period Register TON TON -- -- TSIDL TSIDL -- -- -- -- -- -- -- -- -- -- -- --
Timer4 Register Timer5 Holding Register (for 32-bit operations only) Timer5 Register Timer4 Period Register Timer5 Period Register TON TON -- -- TSIDL TSIDL -- -- -- -- -- -- -- -- -- -- -- --
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-7:
File Name IC1CON1 IC1CON2 IC1BUF IC1TMR IC2CON1 IC2CON2 IC2BUF IC2TMR IC3CON1 IC3CON2 IC3BUF IC3TMR IC4CON1 IC4CON2 IC4BUF IC4TMR IC5CON1 IC5CON2 IC5BUF IC5TMR Legend: Addr 0140 0142 0144 0146 0148 014A 014C 014E 0150 0152 0154 0156 0158 015A 015C 015E 0160 0162 0164 0166
INPUT CAPTURE REGISTER MAP
Bit 15 -- -- Bit 14 -- -- Bit 13 ICSIDL -- Bit 12 Bit 11 Bit 10 Bit 9 -- -- Bit 8 -- IC32 Bit 7 -- ICTRIG Bit 6 ICI1 TRIGSTAT Bit 5 ICI0 -- Bit 4 ICOV Bit 3 ICBNE Bit 2 ICM2 Bit 1 ICM1 Bit 0 ICM0 All Reset s 0000 0000 xxxx ICI0 -- ICOV ICBNE ICM2 ICM1 ICM0 0000 0000 xxxx ICI0 -- ICOV ICBNE ICM2 ICM1 ICM0 0000 0000 xxxx ICI0 -- ICOV ICBNE ICM2 ICM1 ICM0 0000 SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
2010 Microchip Technology Inc. DS39940D-page 39
ICTSEL2 ICTSEL1 ICTSEL0 -- -- --
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
Input Capture 1 Buffer Register Timer Value 1 Register -- -- -- -- ICSIDL -- ICTSEL2 ICTSEL1 ICTSEL0 -- -- -- -- -- -- IC32 -- ICTRIG ICI1 TRIGSTAT
Input Capture 2 Buffer Register Timer Value 2 Register -- -- -- -- ICSIDL -- ICTSEL2 ICTSEL1 ICTSEL0 -- -- -- -- -- -- IC32 -- ICTRIG ICI1 TRIGSTAT
Input Capture 3 Buffer Register Timer Value 3 Register -- -- -- -- ICSIDL -- ICTSEL2 ICTSEL1 ICTSEL0 -- -- -- -- -- -- IC32 -- ICTRIG ICI1 TRIGSTAT
Input Capture 4 Buffer Register Timer Value 4 Register -- -- -- -- ICSIDL -- ICTSEL2 ICTSEL1 ICTSEL0 -- -- -- -- -- -- IC32 -- ICTRIG ICI1 TRIGSTAT ICI0 -- ICOV ICBNE ICM2 ICM1 ICM0
PIC24FJ64GB004 FAMILY
0000 xxxx 0000 0000 xxxx SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
Input Capture 5 Buffer Register Timer Value 5 Register
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-8:
File Name OC1CON1 OC1CON2 OC1RS OC1R OC1TMR OC2CON1 OC2CON2 OC2RS OC2R OC2TMR OC3CON1 OC3CON2 OC3RS OC3R OC3TMR OC4CON1 OC4CON2 OC4RS OC4R OC4TMR OC5CON1 OC5CON2 OC5RS OC5R OC5TMR Legend: Addr 0190 0192 0194 0196 0198 019A 019C 019E 01A0 01A2 01A4 01A6 01A8 01AA 01AC 01AE 01B0 01B2 01B4 01B6 01B8 01BA 01BC 01BE 01C0
OUTPUT COMPARE REGISTER MAP
Bit 15 -- FLTMD Bit 14 -- Bit 13 OCSIDL Bit 12 Bit 11 Bit 10 Bit 9 ENFLT2 DCB0 Bit 8 ENFLT1 OC32 Bit 7 ENFLT0 OCTRIG Bit 6 OCFLT2 TRIGSTAT Bit 5 OCFLT1 OCTRIS Bit 4 OCFLT0 Bit 3 TRIGMODE Bit 2 OCM2 Bit 1 OCM1 Bit 0 OCM0 All Resets 0000 000C 0000 0000 xxxx OCFLT1 OCTRIS OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000 000C 0000 0000 xxxx OCFLT1 OCTRIS OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000 000C 0000 0000 xxxx OCFLT1 OCTRIS OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000 000C 0000 0000 xxxx OCFLT1 OCTRIS OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000 000C 0000 0000 xxxx SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
DS39940D-page 40 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
OCTSEL2 OCTSEL1 OCTSEL0 OCINV -- DCB1
FLTOUT FLTTRIEN
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
Output Compare 1 Secondary Register Output Compare 1 Register Timer Value 1 Register -- FLTMD -- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 OCINV -- DCB1 ENFLT2 DCB0 ENFLT1 OC32 ENFLT0 OCTRIG OCFLT2 TRIGSTAT FLTOUT FLTTRIEN
Output Compare 2 Secondary Register Output Compare 2 Register Timer Value 2 Register -- FLTMD -- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 OCINV -- DCB1 ENFLT2 DCB0 ENFLT1 OC32 ENFLT0 OCTRIG OCFLT2 TRIGSTAT FLTOUT FLTTRIEN
Output Compare 3 Secondary Register Output Compare 3 Register Timer Value 3 Register -- FLTMD -- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 OCINV -- DCB1 ENFLT2 DCB0 ENFLT1 OC32 ENFLT0 OCTRIG OCFLT2 TRIGSTAT FLTOUT FLTTRIEN
Output Compare 4 Secondary Register Output Compare 4 Register Timer Value 4 Register -- FLTMD -- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 OCINV -- DCB1 ENFLT2 DCB0 ENFLT1 OC32 ENFLT0 OCTRIG OCFLT2 TRIGSTAT FLTOUT FLTTRIEN
Output Compare 5 Secondary Register Output Compare 5 Register Timer Value 5 Register
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
2010 Microchip Technology Inc. DS39940D-page 41
TABLE 4-9:
File Name I2C1RCV I2C1TRN I2C1BRG I2C1CON I2C1STAT I2C1ADD I2C1MSK I2C2RCV I2C2TRN I2C2BRG I2C2CON I2C2STAT I2C2ADD I2C2MSK Legend: Addr 0200 0202 0204 0206 0208 020A 020C 0210 0212 0214 0216 0218 021A 021C
I2CTM REGISTER MAP
Bit 15 -- -- -- I2CEN -- -- -- -- -- I2CEN -- -- Bit 14 -- -- -- -- -- -- -- -- -- -- -- -- Bit 13 -- -- -- I2CSIDL -- -- -- -- -- -- I2CSIDL -- -- -- Bit 12 -- -- -- SCLREL -- -- -- -- -- -- SCLREL -- -- -- Bit 11 -- -- -- IPMIEN -- -- -- -- -- -- IPMIEN -- -- -- Bit 10 -- -- -- A10M BCL -- -- -- -- -- A10M BCL -- -- -- -- -- DISSLW GCSTAT SMEN ADD10 GCEN IWCOL STREN I2COV -- -- ACKDT D/A Bit 9 -- -- -- DISSLW GCSTAT SMEN ADD10 GCEN IWCOL STREN I2COV Bit 8 -- -- ACKDT D/A Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 00FF 0000 PEN R/W RSEN RBF SEN TBF 1000 0000 0000 0000 0000 00FF 0000 PEN R/W RSEN RBF SEN TBF 1000 0000 0000 0000
Receive Register Transmit Register Baud Rate Generator Register ACKEN P RCEN S
ACKSTAT TRSTAT
Address Register Address Mask Register Receive Register Transmit Register Baud Rate Generator Register ACKEN P RCEN S
ACKSTAT TRSTAT
Address Register Address Mask Register
PIC24FJ64GB004 FAMILY
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-10:
File Name U1MODE U1STA U1TXREG U1RXREG U1BRG U2MODE U2STA U2TXREG U2RXREG U2BRG Legend: Addr 0220 0222 0224 0226 0228 0230 0232 0234 0236 0238
UART REGISTER MAPS
Bit 15 UARTEN -- -- UARTEN -- -- Bit 14 -- -- -- -- -- -- Bit 13 USIDL UTXISEL0 -- -- USIDL UTXISEL0 -- -- Bit 12 IREN -- -- -- IREN -- -- -- Bit 11 RTSMD UTXBRK -- -- RTSMD UTXBRK -- -- Bit 10 -- UTXEN -- -- -- UTXEN -- -- Bit 9 UEN1 UTXBF -- -- Baud Rate Generator Prescaler Register UEN1 UTXBF -- -- Baud Rate Generator Prescaler Register UEN0 TRMT WAKE LPBACK ABAUD ADDEN RXINV RIDLE BRGH PERR PDSEL1 FERR PDSEL0 OERR STSEL URXDA UTXISEL1 UTXINV URXISEL1 URXISEL0 Bit 8 UEN0 TRMT Bit 7 WAKE Bit 6 LPBACK Bit 5 ABAUD ADDEN Bit 4 RXINV RIDLE Bit 3 BRGH PERR Bit 2 PDSEL1 FERR Bit 1 PDSEL0 OERR Bit 0 STSEL URXDA All Resets 0000 0110 xxxx 0000 0000 0000 0110 xxxx 0000 0000
UTXISEL1 UTXINV
URXISEL1 URXISEL0
Transmit Register Receive Register
Transmit Register Receive Register
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
DS39940D-page 42 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 4-11:
File Name SPI1STAT SPI1CON1 SPI1CON2 SPI1BUF SPI2STAT SPI2CON1 SPI2CON2 SPI2BUF Legend: Addr 0240 0242 0244 0248 0260 0262 0264 0268
SPI REGISTER MAPS
Bit 15 SPIEN -- FRMEN SPIEN -- FRMEN Bit 14 -- -- SPIFSD -- -- SPIFSD Bit 13 SPISIDL -- SPIFPOL SPISIDL -- SPIFPOL Bit 12 -- DISSCK -- -- DISSCK -- Bit 11 -- DISSDO -- -- DISSDO -- Bit 10 Bit 9 Bit 8 Bit 7 SRMPT SSEN -- SRMPT SSEN -- Bit 6 SPIROV CKP -- SPIROV CKP -- Bit 5 SRXMPT MSTEN -- SRXMPT MSTEN -- Bit 4 SISEL2 SPRE2 -- SISEL2 SPRE2 -- Bit 3 SISEL1 SPRE1 -- SISEL1 SPRE1 -- Bit 2 SISEL0 SPRE0 -- SISEL0 SPRE0 -- Bit 1 SPITBF PPRE1 SPIFE SPITBF PPRE1 SPIFE Bit 0 SPIRBF PPRE0 SPIBEN SPIRBF PPRE0 SPIBEN All Resets 0000 0000 0000 0000 0000 0000 0000 0000
SPIBEC2 SPIBEC1 SPIBEC0 MODE16 -- SMP -- CKE --
Transmit and Receive Buffer SPIBEC2 SPIBEC1 SPIBEC0 MODE16 -- SMP -- CKE --
Transmit and Receive Buffer
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-12:
File Name TRISA PORTA LATA ODCA Legend: Note 1: Addr 02C0 02C2 02C4 02C6
PORTA REGISTER MAP
Bit 15 -- -- -- -- Bit 14 -- -- -- -- Bit 13 -- -- -- -- Bit 12 -- -- -- -- Bit 11 -- -- -- -- Bit 10(1) TRISA10 RA10 LATA10 ODA10 Bit 9(1) TRISA9 RA9 LATA9 ODA9 Bit 8(1) TRISA8 RA8 LATA8 ODA8 Bit 7(1) TRISA7 RA7 LATA7 ODA7 Bit 6 -- -- -- -- Bit 5 -- -- -- -- Bit 4 TRISA4 RA4 LATA4 ODA4 Bit 3 TRISA3 RA3 LATA3 ODA3 Bit2 TRISA2 RA2 LATA2 ODA2 Bit 1 TRISA1 RA1 LATA1 ODA1 Bit 0 TRISA0 RA0 LATA0 ODA0 All Resets 079F xxxx xxxx 0000
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Reset values shown are for 44-pin devices. Bits are unimplemented in 28-pin devices; read as `0'.
TABLE 4-13:
File Name TRISB PORTB LATB ODCB Legend: Addr 02C8 02CA 02CC 02CE
PORTB REGISTER MAP
Bit 15 Bit 14 Bit 13 Bit 12 -- -- -- -- Bit 11 TRISB11 RB11 LATB11 ODB11 Bit 10 TRISB10 RB10 LATB10 ODB10 Bit 9 TRISB9 RB9 LATB9 ODB9 Bit 8 TRISB8 RB8 LATB8 ODB8 Bit 7 TRISB7 RB7 LATB7 ODB7 Bit 6 -- -- -- -- Bit 5 TRISB5 RB5 LATB5 ODB5 Bit 4 TRISB4 RB4 LATB4 ODB4 Bit 3 TRISB3 RB3 LATB3 ODB3 Bit 2 TRISB2 RB2 LATB2 ODB2 Bit 1 TRISB1 RB1 LATB1 ODB1 Bit 0 TRISB0 RB0 LATB0 ODB0 All Resets EFBF xxxx xxxx 0000
TRISB15 TRISB14 TRISB13 RB15 LATB15 ODB15 RB14 LATB14 ODB14 RB13 LATB13 ODB13
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-14:
File Name TRISC PORTC LATC ODCC Legend: Note 1: Addr 02D0 02D2 02D4 02D6
PORTC REGISTER MAP
Bit 15 -- -- -- -- Bit 14 -- -- -- -- Bit 13 -- -- -- -- Bit 12 -- -- -- -- Bit 11 -- -- -- -- Bit 10 -- -- -- -- Bit 9(1) TRISC9 RC9 LATC9 ODC9 Bit 8(1) TRISC8 RC8 LATC8 ODC8 Bit 7(1) TRISC7 RC7 LATC7 ODC7 Bit 6(1) TRISC6 RC6 LATC6 ODC6 Bit 5(1) TRISC5 RC5 LATC5 ODC5 Bit 4(1) TRISC4 RC4 LATC4 ODC4 Bit 3(1) TRISC3 RC3 LATC3 ODC3 Bit 2(1) TRISC2 RC2 LATC2 ODC2 Bit 1(2(1) TRISC1 RC1 LATC1 ODC1 Bit 0(1) TRISC0 RC0 LATC0 ODC0 All Resets 03FF xxxx xxxx 0000
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Reset values shown are for 44-pin devices. Bits are unimplemented in 28-pin devices; read as `0'.
TABLE 4-15:
File Name PADCFG1 Legend: Addr 02FC
PAD CONFIGURATION REGISTER MAP
Bit 15 -- Bit 14 -- Bit 13 -- Bit 12 -- Bit 11 -- Bit 10 -- Bit 9 -- Bit 8 -- Bit 7 -- Bit 6 -- Bit 5 -- Bit 4 -- Bit 3 -- Bit 2 Bit 1 Bit 0 PMPTTL All Resets 0000
2010 Microchip Technology Inc. DS39940D-page 43
RTSECSEL1 RTSECSEL0
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-16:
File Name ADC1BUF0 ADC1BUF1 ADC1BUF2 ADC1BUF3 ADC1BUF4 ADC1BUF5 ADC1BUF6 ADC1BUF7 ADC1BUF8 ADC1BUF9 ADC1BUFA ADC1BUFB ADC1BUFC ADC1BUFD ADC1BUFE ADC1BUFF AD1CON1 AD1CON2 AD1CON3 AD1CHS AD1PCFG AD1CSSL Legend: Note 1: Addr 0300 0302 0304 0306 0308 030A 030C 030E 0310 0312 0314 0316 0318 031A 031C 031E 0320 0322 0324 0328 032C 0330
ADC REGISTER MAP
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
ADC Data Buffer 0 ADC Data Buffer 1 ADC Data Buffer 2 ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6 ADC Data Buffer 7 ADC Data Buffer 8 ADC Data Buffer 9 ADC Data Buffer 10 ADC Data Buffer 11 ADC Data Buffer 12 ADC Data Buffer 13 ADC Data Buffer 14 ADC Data Buffer 15 ADON VCFG2 ADRC CH0NB PCFG15 CSSL15 -- VCFG1 r -- CSSL14 ADSIDL VCFG0 r -- -- r SAMC4 CH0SB4
(1)
PIC24FJ64GB004 FAMILY
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx SSRC1 -- ADCS6 -- SSRC0 SMPI3 ADCS5 -- PCFG5 CSSL5 -- SMPI2 ADCS4 CH0SA4 PCFG4 CSSL4 -- SMPI1 ADCS3 CH0SA3 PCFG3 CSSL3 ASAM SMPI0 ADCS2 CH0SA2 PCFG2 CSSL2 SAMP BUFM ADCS1 CH0SA1 PCFG1 CSSL1 DONE ALTS ADCS0 CH0SA0 PCFG0 CSSL0 0000 0000 0000 0000 0000 0000
-- -- SAMC3 CH0SB3 CSSL11
-- CSCNA SAMC2 CH0SB2 PCFG10 CSSL10
FORM1 -- SAMC1 CH0SB1 PCFG9 CSSL9
FORM0 -- SAMC0 CH0SB0
SSRC2 BUFS ADCS7 CH0NA
PCFG14 PCFG13 PCFG12(1) PCFG11 CSSL13 CSSL12
PCFG8(1) PCFG7(1) PCFG6(1) CSSL8(1) CSSL7(1) CSSL6(1)
-- = unimplemented, read as `0', r = reserved, maintain as `0'. Reset values are shown in hexadecimal. Bits are not available on 28-pin devices; read as `0'.
TABLE 4-17:
File Name CTMUCON CTMUICON Legend: Addr
CTMU REGISTER MAP
Bit 15 Bit 14 -- ITRIM4 Bit 13 CTMUSIDL ITRIM3 Bit 12 TGEN Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 0000
033C CTMUEN 033E ITRIM5
EDGEN EDGSEQEN IDISSEN ITRIM0 IRNG1
CTTRIG EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT IRNG0 -- -- -- -- -- -- -- --
ITRIM2 ITRIM1
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
DS39940D-page 44 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 4-18:
File Name U1OTGIR U1OTGIE U1OTGSTAT U1OTGCON U1PWRC U1IR U1IE U1EIR U1EIE U1STAT U1CON U1ADDR U1BDTP1 U1FRML U1FRMH U1TOK(2) U1SOF(2) U1CNFG1 U1CNFG2 Legend: Note 1: 2: Addr 0480 0482 0484 0486 0488 048A(1) 048C(1) 048E(1) 0490(1) 0492 0494(1) 0496 0498 049A 049C 049E 04A0 04A6 04A8
USB OTG REGISTER MAP
Bit 15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 14 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 12 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 8 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- UTEYE -- UOEMON -- -- UVCMPSEL PID3 PID2 PID1 Bit 7 IDIF IDIE ID DPPULUP UACTPND STALLIF STALLIF STALLIE STALLIE BTSEF BTSEF BTSEE BTSEE ENDPT3 -- JSTATE(1) LSPDEN(1) Bit 6 T1MSECIF T1MSECIE -- DMPULUP -- -- ATTACHIF(1) -- ATTACHIE(1) -- -- -- -- ENDPT2 SE0 SE0 Bit 5 LSTATEIF LSTATEIE LSTATE -- RESUMEIF RESUMEIF RESUMEIE RESUMEIE DMAEF DMAEF DMAEE DMAEE ENDPT1 PKTDIS TOKBUSY(1) Bit 4 ACTVIF ACTVIE -- USLPGRD IDLEIF IDLEIF IDLEIE IDLEIE BTOEF BTOEF BTOEE BTOEE ENDPT0 -- USBRST Bit 3 SESVDIF SESVDIE SESVD VBUSON -- TRNIF TRNIF TRNIE TRNIE DFN8EF DFN8EF DFN8EE DFN8EE DIR HOSTEN HOSTEN Bit 2 SESENDIF SESENDIE SESEND OTGEN -- SOFIF SOFIF SOFIE SOFIE CRC16EF CRC16EF CRC16EE CRC16EE PPBI RESUME RESUME Bit 1 -- -- -- VBUSCHG USUSPND UERRIF UERRIF UERRIE UERRIE CRC5EF EOFEF(1) CRC5EE EOFEE(1) -- PPBRST PPBRST Bit 0 VBUSVDIF VBUSVDIE VBUSVD VBUSDIS USBPWR URSTIF URSTIE PIDEF PIDEF PIDEE PIDEE -- USBEN SOFEN(1) -- All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EP2 -- EP1 PPB1 UVCMPDIS EP0 PPB0 UTRDIS 0000 0000 0000 0000
DPPULDWN DMPULDWN
DETACHIF(1) 0000 DETACHIE(1) 0000
USB Device Address (DEVADDR) Register Buffer Descriptor Table Base Address Register Frame Count Register Low Byte Frame Count Register High Byte PID0 USBSIDL PUVBUS EP3 -- Start-of-Frame Count Register EXTI2CEN UVBUSDIS
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Alternate register or bit definitions when the module is operating in Host mode. This register is available in Host mode only.
TABLE 4-18:
File Name U1EP0 U1EP1 U1EP2 U1EP3 U1EP4 U1EP5 U1EP6 U1EP7 U1EP8 U1EP9 U1EP10 U1EP11 U1EP12 U1EP13 U1EP14 U1EP15 U1PWMRRS U1PWMCON Legend: Note 1: 2: Addr 04AA 04AC 04AE 04B0 04B2 04B4 04B6 04B8 04BA 04BC 04BE 04C0 04C2 04C4 04C6 04C8 04CC 04CE
USB OTG REGISTER MAP (CONTINUED)
Bit 15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PWMEN Bit 14 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 12 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 11 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 8 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 7 LSPD(1) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 6 RETRYDIS(1) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 4 EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS EPCONDIS -- Bit 3 EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN EPRXEN -- Bit 2 EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN EPTXEN -- Bit 1 EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL EPSTALL -- Bit 0 EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK EPHSHK -- All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
2010 Microchip Technology Inc. DS39940D-page 45
PIC24FJ64GB004 FAMILY
USB Power Supply PWM Duty Cycle Register PWMPOL CNTEN
USB Power Supply PWM Period Register
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Alternate register or bit definitions when the module is operating in Host mode. This register is available in Host mode only.
TABLE 4-19:
File Name Addr PMCON PMMODE PMADDR PMDOUT1 PMDOUT2 0606 PMDIN1 PMDIN2 PMAEN PMSTAT Legend: Note 1: 0608 060A 060C 060E 0600 0602 0604
PARALLEL MASTER/SLAVE PORT REGISTER MAP
Bit 15 PMPEN BUSY -- Bit 14 -- IRQM1 CS1 Bit 13 PSIDL IRQM0 -- Bit 12 Bit 11 Bit 10 PTBEEN MODE16 Bit 9 Bit 8 Bit 7 CSF1 WAITB1 Bit 6 CSF0 WAITB0 Bit 5 ALP WAITM3 Bit 4 -- WAITM2 Bit 3 CS1P WAITM1 Bit 2 BEP WAITM0 Bit 1 WRSP WAITE1 ADDR1 Bit 0 RDSP WAITE0 ADDR0 All Resets 0000 0000 0000 0000 0000 0000 0000 PTEN1 OB1E PTEN0 OB0E 0000 0000 -- -- OB3E OB2E
ADRMUX1 ADRMUX0 INCM1 -- INCM0 --
PTWREN PTRDEN MODE1 MODE0
ADDR10(1) ADDR9(1) ADDR8(1) ADDR7(1) ADDR6(1) ADDR5(1) ADDR4(1) ADDR3(1) ADDR2(1) Parallel Port Data Out Register 1 (Buffers 0 and 1) Parallel Port Data Out Register 2 (Buffers 2 and 3) Parallel Port Data In Register 1 (Buffers 0 and 1) Parallel Port Data In Register 2 (Buffers 2 and 3)
-- IBF
PTEN14 IBOV
-- --
-- --
-- IB3F
PTEN10(1) PTEN9(1) PTEN8(1) PTEN7(1) PTEN6(1) PTEN5(1) PTEN4(1) PTEN3(1) PTEN2(1) IB2F IB1F IB0F OBE OBUF
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Bits are not available on 28-pin devices; read as `0'.
TABLE 4-20:
File Name ALRMVAL ALCFGRPT RTCVAL RCFGCAL Legend: Addr 0620 0622 0624 0626
REAL-TIME CLOCK AND CALENDAR REGISTER MAP
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets xxxx ARPT5 CAL5 ARPT4 CAL4 ARPT3 CAL3 ARPT2 CAL2 ARPT1 CAL1 ARPT0 CAL0 0000 xxxx xxxx
DS39940D-page 46 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Alarm Value Register Window Based on ALRMPTR<1:0> ALRMEN CHIME RTCEN -- AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 RTCOE RTCPTR1 RTCPTR0 ARPT7 CAL7 ARPT6 CAL6 RTCC Value Register Window Based on RTCPTR<1:0> RTCWREN RTCSYNC HALFSEC
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-21:
File Name CRCCON1 CRCCON2 CRCXORL CRCXORH CRCDATL CRCDATH CRCWDATL CRCWDATH Legend: Addr 0640 0642 0644 0646 0648 064A 064C 064E
CRC REGISTER MAP
Bit 15 CRCEN -- X15 X31 Bit 14 -- -- X14 X30 Bit 13 CSIDL -- X13 X29 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 CRCGO PLEN4 X4 X20 Bit 3 LENDIAN PLEN3 X3 X19 Bit 2 -- PLEN2 X2 X19 Bit 1 -- PLEN1 X1 X17 Bit 0 -- PLEN0 -- X16 All Resets 0000 0000 0000 0000 xxxx xxxx xxxx xxxx
VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 DWIDTH0 X12 X28 X11 X27 X10 X26 X9 X25 X8 X24 -- X7 X23
CRCMPT CRCISEL -- X6 X22 -- X5 X21
CRC Data Input Register Low Word CRC Data Input Register High Word CRC Result Register Low Word CRC Result Register High Word
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-22:
File Name CMSTAT CVRCON CM1CON CM2CON CM3CON Legend: Addr 0650 0652 0654 065C 0664
COMPARATORS REGISTER MAP
Bit 15 CMIDL -- CEN CEN CEN Bit 14 -- -- COE COE COE Bit 13 -- -- CPOL CPOL CPOL Bit 12 -- -- -- -- -- Bit 11 -- -- -- -- -- Bit 10 C3EVT -- -- -- Bit 9 C2EVT CEVT CEVT CEVT Bit 8 C1EVT COUT COUT COUT Bit 7 -- Bit 6 -- CVROE Bit 5 -- CVRR -- -- -- Bit 4 -- CVRSS CREF CREF CREF Bit 3 -- CVR3 -- -- -- Bit 2 C3OUT CVR2 -- -- -- Bit 1 C2OUT CVR1 CCH1 CCH1 CCH1 Bit 0 C1OUT CVR0 CCH0 CCH0 CCH0 All Resets 0000 0000 0000 0000 0000
CVREFP CVREFM1 CVREFM0 CVREN
EVPOL1 EVPOL0 EVPOL1 EVPOL0 EVPOL1 EVPOL0
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
TABLE 4-23:
File Name RPINR0 RPINR1 RPINR3 RPINR4 RPINR7 RPINR8 RPINR9 RPINR11 RPINR18 RPINR19 RPINR20 RPINR21 RPINR22 RPINR23 RPOR0 RPOR1 RPOR2 RPOR3 RPOR4 RPOR5 RPOR6 RPOR7 RPOR8(1) RPOR9(1) RPOR10(1) RPOR11(1) RPOR12(1) Legend: Note 1: Addr 0680 0682 0686 0688 068E 0690 0692 0696 06A4 06A6 06A8 06AA 06AC 06AE 06C0 06C2 06C4 06C6 06C8 06CA 06CC 06CE 06D0 06D2 06D4 06D6 06D8
PERIPHERAL PIN SELECT REGISTER MAP
Bit 15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 14 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 12 INT1R4 -- T3CKR4 T5CKR4 IC2R4 IC4R4 -- OCFBR4 U1CTSR4 U2CTSR4 SCK1R4 -- SCK2R4 -- RP1R4 RP3R4 RP5R4 RP7R4 RP9R4 RP11R4 RP13R4 RP15R4 RP17R4 RP19R4 RP21R4 RP23R4 RP25R4 Bit 11 INT1R3 -- T3CKR3 T5CKR3 IC2R3 IC4R3 -- OCFBR3 U1CTSR3 U2CTSR3 SCK1R3 -- SCK2R3 -- RP1R3 RP3R3 RP5R3 RP7R3 RP9R3 RP11R3 RP13R3 RP15R3 RP17R3 RP19R3 RP21R3 RP23R3 RP25R3 Bit 10 INT1R2 -- T3CKR2 T5CKR2 IC2R2 IC4R2 -- OCFBR2 U1CTSR2 U2CTSR2 SCK1R2 -- SCK2R2 -- RP1R2 RP3R2 RP5R2 RP7R2 RP9R2 RP11R2 RP13R2 RP15R2 RP17R2 RP19R2 RP21R2 RP23R2 RP25R2 Bit 9 INT1R1 -- T3CKR1 T5CKR1 IC2R1 IC4R1 -- OCFBR1 U1CTSR1 U2CTSR1 SCK1R1 -- SCK2R1 -- RP1R1 RP3R1 RP5R1 RP7R1 RP9R1 RP11R1 RP13R1 RP15R1 RP17R1 RP19R1 RP21R1 RP23R1 RP25R1 Bit 8 INT1R0 -- T3CKR0 T5CKR0 IC2R0 IC4R0 -- OCFBR0 U1CTSR0 U2CTSR0 SCK1R0 -- SCK2R0 -- RP1R0 RP3R0 RP5R0 RP7R0 RP9R0 RP11R0 RP13R0 RP15R0 RP17R0 RP19R0 RP21R0 RP23R0 RP25R0 Bit 7 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 6 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Bit 4 -- INT2R4 T2CKR4 T4CKR4 IC1R4 IC3R4 IC5R4 OCFAR4 U1RXR4 U2RXR4 SDI1R4 SS1R4 SDI2R4 SS2R4 RP0R4 RP2R4 RP4R4 RP6R4 RP8R4 RP10R4 -- RP14R4 RP16R4 RP18R4 RP20R4 RP22R4 RP24R4 Bit 3 -- INT2R3 T2CKR3 T4CKR3 IC1R3 IC3R3 IC5R3 OCFAR3 U1RXR3 U2RXR3 SDI1R3 SS1R3 SDI2R3 SS2R3 RP0R3 RP2R3 RP4R3 RP6R3 RP8R3 RP10R3 -- RP14R3 RP16R3 RP18R3 RP20R3 RP22R3 RP24R3 Bit 2 -- INT2R2 T2CKR2 T4CKR2 IC1R2 IC3R2 IC5R2 OCFAR2 U1RXR2 U2RXR2 SDI1R2 SS1R2 SDI2R2 SS2R2 RP0R2 RP2R2 RP4R2 RP6R2 RP8R2 RP10R2 -- RP14R2 RP16R2 RP18R2 RP20R2 RP22R2 RP24R2 Bit 1 -- INT2R1 T2CKR1 T4CKR1 IC1R1 IC3R1 IC5R1 OCFAR1 U1RXR1 U2RXR1 SDI1R1 SS1R1 SDI2R1 SS2R1 RP0R1 RP2R1 RP4R1 RP6R1 RP8R1 RP10R1 -- RP14R1 RP16R1 RP18R1 RP20R1 RP22R1 RP24R1 Bit 0 -- INT2R0 T2CKR0 T4CKR0 IC1R0 IC3R0 IC5R0 OCFAR0 U1RXR0 U2RXR0 SDI1R0 SS1R0 SDI2R0 SS2R0 RP0R0 RP2R0 RP4R0 RP6R0 RP8R0 RP10R0 -- RP14R0 RP16R0 RP18R0 RP20R0 RP22R0 RP24R0 All Resets 1F00 001F 1F1F 1F1F 1F1F 1F1F 001F 1F1F 1F1F 1F1F 1F1F 001F 1F1F 001F 0000
2010 Microchip Technology Inc. DS39940D-page 47
PIC24FJ64GB004 FAMILY
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Registers are unimplemented in 28-pin devices; read as `0'.
TABLE 4-24:
File Name RCON OSCCON CLKDIV OSCTUN REFOCON Legend: Note 1: 2: Addr 0740 0742 0744 0748 074E
SYSTEM REGISTER MAP
Bit 15 TRAPR -- ROI -- ROEN Bit 14 IOPUWR COSC2 DOZE2 -- -- Bit 13 -- COSC1 DOZE1 -- ROSSLP Bit 12 -- COSC0 DOZE0 -- ROSEL Bit 11 -- -- DOZEN -- RODIV3 Bit 10 DPSLP NOSC2 RCDIV2 -- RODIV2 Bit 9 CM NOSC1 RCDIV1 -- RODIV1 Bit 8 PMSLP NOSC0 RCDIV0 -- RODIV0 Bit 7 EXTR CLKLOCK CPDIV1 -- -- Bit 6 SWR IOLOCK CPDIV0 -- -- Bit 5 SWDTEN LOCK PLLEN TUN5 -- Bit 4 WDTO -- -- TUN4 -- Bit 3 SLEEP CF -- TUN3 -- Bit 2 IDLE -- TUN2 -- Bit 1 BOR -- TUN1 -- Bit 0 POR OSWEN -- TUN0 -- All Resets Note 1 Note 2 0100 0000 0000
DS39940D-page 48 2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
POSCEN SOSCEN
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information. The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.
TABLE 4-25:
File Name DSCON DSWAKE DSGPR0 DSGPR1 Legend: Note 1: Addr 758 075A 075C 075E
DEEP SLEEP REGISTER MAP
Bit 15 DSEN -- Bit 14 -- -- Bit 13 -- -- Bit 12 -- -- Bit 11 -- -- Bit 10 -- -- Bit 9 -- -- Bit 8 -- DSINT0 Bit 7 -- DSFLT Bit 6 -- -- Bit 5 -- -- Bit 4 -- DSWDT Bit 3 -- DSRTC Bit 2 -- DSMCLR Bit 1 DSBOR -- Bit 0 RELEASE DSPOR All Resets(1) 0000 0001 0000 0000
Deep Sleep General Purpose Register 0 Deep Sleep General Purpose Register 1
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. The Deep Sleep registers are only reset on a VDD POR event.
TABLE 4-26:
File Name NVMCON NVMKEY Legend: Note 1: Addr 0760 0766
NVM REGISTER MAP
Bit 15 WR -- Bit 14 WREN -- Bit 13 WRERR -- Bit 12 -- -- Bit 11 -- -- Bit 10 -- -- Bit 9 -- -- Bit 8 -- -- Bit 7 -- Bit 6 ERASE Bit 5 -- Bit 4 -- Bit 3 Bit 2 Bit 1 Bit 0 All Resets
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1) 0000
NVMKEY Register<7:0>
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.
2010 Microchip Technology Inc. DS39940D-page 49
TABLE 4-27:
File Name PMD1 PMD2 PMD3 PMD4 Legend: Addr 0770 0772 0774 0776
PMD REGISTER MAP
Bit 15 T5MD -- -- -- Bit 14 T4MD -- -- -- Bit 13 T3MD -- -- -- Bit 12 T2MD IC5MD -- -- Bit 11 T1MD IC4MD -- -- Bit 10 -- IC3MD -- Bit 9 -- IC2MD -- Bit 8 -- IC1MD -- Bit 7 I2C1MD -- CRCMD -- Bit 6 U2MD -- -- UPWMMD Bit 5 U1MD -- -- -- Bit 4 SPI2MD OC5MD -- -- Bit 3 SPI1MD OC4MD -- Bit 2 -- OC3MD -- Bit 1 -- OC2MD I2C2MD LVDMD Bit 0 ADC1MD OC1MD -- USB1MD All Resets 0000 0000 0000 0000
CMPMD RTCCMD PMPMD
REFOMD CTMUMD
-- = unimplemented, read as `0'. Reset values are shown in hexadecimal.
PIC24FJ64GB004 FAMILY
PIC24FJ64GB004 FAMILY
4.2.5 SOFTWARE STACK
4.3
In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear. Note: A PC push during exception processing will concatenate the SRL register to the MSB of the PC prior to the push.
Interfacing Program and Data Memory Spaces
The PIC24F architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces. Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation: * Using table instructions to access individual bytes or words anywhere in the program space * Remapping a portion of the program space into the data space (program space visibility) Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data; it can only access the least significant word of the program word.
The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to `0' because all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh. Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.
4.3.1
ADDRESSING PROGRAM SPACE
Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used. For table operations, the 8-bit Table Memory Page Address (TBLPAG) register is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1). For remapping operations, the 8-bit Program Space Visibility Page Address (PSVPAG) register is used to define a 16K word page in the program space. When the Most Significant bit of the EA is `1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table 4-28 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.
FIGURE 4-4:
0000h 15
CALL STACK FRAME
0
Stack Grows Towards Higher Address
PC<15:0> 000000000 PC<22:16>
W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH : [W15++]
DS39940D-page 50
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 4-28: PROGRAM SPACE ADDRESS CONSTRUCTION
Access Space User User Configuration Program Space Visibility (Block Remap/Read) Note 1: User 0 0 Program Space Address <23> 0 TBLPAG<7:0> 0xxx xxxx TBLPAG<7:0> 1xxx xxxx PSVPAG<7:0> xxxx xxxx <22:16> <15> PC<22:1> 0xx xxxx xxxx xxxx xxxx xxx0 Data EA<15:0> xxxx xxxx xxxx xxxx Data EA<15:0> xxxx xxxx xxxx xxxx Data EA<14:0>(1) xxx xxxx xxxx xxxx <14:1> <0> 0 Access Type Instruction Access (Code Execution) TBLRD/TBLWT (Byte/Word Read/Write)
Data EA<15> is always `1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.
FIGURE 4-5:
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
Program Counter(1)
0
Program Counter 23 Bits EA
0
1/0
Table Operations(2)
1/0
TBLPAG 8 Bits 24 Bits 16 Bits
Select Program Space (Remapping) Visibility(1) 0 PSVPAG 8 Bits
1
EA
0
15 Bits 23 Bits
User/Configuration Space Select
Byte Select
Note 1: The LSb of program space addresses is always fixed as `0' in order to maintain word alignment of data in the program and data spaces. 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.
2010 Microchip Technology Inc.
DS39940D-page 51
PIC24FJ64GB004 FAMILY
4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS
2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the `phantom' byte, will always be `0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be `0' when the upper `phantom' byte is selected (byte select = 1).
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte. Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations. 1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is `1'; the lower byte is selected when it is `0'.
In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory". For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space. Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.
FIGURE 4-6:
TBLPAG 02
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
Program Space
Data EA<15:0> 23 15 0 000000h 00000000 020000h 030000h 00000000 00000000 00000000 `Phantom' Byte 23 16 8 0
TBLRDH.B (Wn<0> = 0) TBLRDL.B (Wn<0> = 1) TBLRDL.B (Wn<0> = 0) TBLRDL.W The address for the table operation is determined by the data EA within the page defined by the TBLPAG register. Only read operations are shown; write operations are also valid in the user memory area.
800000h
DS39940D-page 52
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY
24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with `1111 1111' or `0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed. Note: PSV access is temporarily disabled during table reads/writes.
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H). Program space access through the data space occurs if the Most Significant bit (MSb) of the data space EA is `1' and program space visibility is enabled by setting the PSV bit in the CPU Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses. Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the
For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time. For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction: * Execution in the first iteration * Execution in the last iteration * Execution prior to exiting the loop due to an interrupt * Execution upon re-entering the loop after an interrupt is serviced Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.
FIGURE 4-7:
PROGRAM SPACE VISIBILITY OPERATION
When CORCON<2> = 1 and EA<15> = 1:
Program Space
PSVPAG 02 23 15 0 000000h 010000h 018000h The data in the page designated by PSVPAG is mapped into the upper half of the data memory space....
Data Space
0000h Data EA<14:0>
8000h
PSV Area ...while the lower 15 bits of the EA specify an exact address within the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address.
FFFFh
800000h
2010 Microchip Technology Inc.
DS39940D-page 53
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 54
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
5.0
Note:
FLASH PROGRAM MEMORY
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 4. "Program Memory" (DS39715).
RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.
5.1
Table Instructions and Flash Programming
The PIC24FJ64GB004 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 2.35V. (If the regulator is disabled, VDDCORE must be over 2.25V.) It can be programmed in four ways: * In-Circuit Serial ProgrammingTM (ICSPTM) * Run-Time Self-Programming (RTSP) * Enhanced In-Circuit Serial Programming (Enhanced ICSP) ICSP allows a PIC24FJ64GB004 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1. The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.
FIGURE 5-1:
ADDRESSING FOR TABLE REGISTERS
24 Bits Using Program Counter 0 Program Counter 0
Working Reg EA Using Table Instruction 1/0 TBLPAG Reg 8 Bits 16 Bits
User/Configuration Space Select
24-Bit EA
Byte Select
2010 Microchip Technology Inc.
DS39940D-page 55
PIC24FJ64GB004 FAMILY
5.2 RTSP Operation 5.3 JTAG Operation
The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words. The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed. Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory. To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes. Note: Writing to a location multiple times without erasing is not recommended. The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.
5.4
Enhanced In-Circuit Serial Programming
Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.
5.5
Control Registers
There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY. The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts. NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to Section 5.6 "Programming Operations" for further details.
5.6
Programming Operations
All of the table write operations are single-word writes (2 instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.
A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.
DS39940D-page 56
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 5-1:
R/SO-0, HC(1) WR bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 SO = Settable Only bit W = Writable bit `1' = Bit is set HC = Hardware Clearable bit `0' = Bit is cleared R/W-0(1) ERASE U-0 -- U-0 -- R/W-0(1) NVMOP3(2) R/W-0(1) NVMOP2(2) R/W-0(1) NVMOP1(2)
NVMCON: FLASH MEMORY CONTROL REGISTER
R/W-0, HS(1) WRERR U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0(1) NVMOP0(2) bit 0 HS = Hardware Settable bit x = Bit is unknown WREN
R/W-0(1)
U = Unimplemented bit, read as `0'
WR: Write Control bit(1) 1 = Initiate a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once the operation is complete. 0 = Program or erase operation is complete and inactive WREN: Write Enable bit(1) 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations WRERR: Write Sequence Error Flag bit(1) 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally Unimplemented: Read as `0' ERASE: Erase/Program Enable bit(1) 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command Unimplemented: Read as `0' NVMOP<3:0>: NVM Operation Select bits(1,2) 1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(3) 0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1) 0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0) 0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1) These bits can only be reset on POR. All other combinations of NVMOP<3:0> are unimplemented. Available in ICSPTM mode only. Refer to the device programming specification.
bit 14
bit 13
bit 12-7 bit 6
bit 5-4 bit 3-0
Note 1: 2: 3:
2010 Microchip Technology Inc.
DS39940D-page 57
PIC24FJ64GB004 FAMILY
5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY
4. 5. The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is as follows: 1. 2. 3. Read eight rows of program memory (512 instructions) and store in data RAM. Update the program data in RAM with the desired new data. Erase the block (see Example 5-1): a) Set the NVMOP bits (NVMCON<3:0>) to `0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits. b) Write the starting address of the block to be erased into the TBLPAG and W registers. c) Write 55h to NVMKEY. d) Write AAh to NVMKEY. e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-1). Write the program block to Flash memory: a) Set the NVMOP bits to `0001' to configure for row programming. Clear the ERASE bit and set the WREN bit. b) Write 55h to NVMKEY. c) Write AAh to NVMKEY. d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.
6.
For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-5.
EXAMPLE 5-1:
ERASING A PROGRAM MEMORY BLOCK - ASSEMBLY LANGUAGE CODE
; ; Initialize NVMCON ; ; ; ; ; ; ; ; ; ; ; ;
; Set up NVMCON for block erase operation MOV #0x4042, W0 MOV W0, NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 MOV W0, TBLPAG MOV #tbloffset(PROG_ADDR), W0 TBLWTL W0, [W0] DISI #5 MOV MOV MOV MOV BSET NOP NOP #0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR
Initialize PM Page Boundary SFR Initialize in-page EA[15:0] pointer Set base address of erase block Block all interrupts with priority <7 for next 5 instructions Write the 55 key Write the AA key Start the erase sequence Insert two NOPs after the erase command is asserted
DS39940D-page 58
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK - `C' LANGUAGE CODE
// Address of row to write
// C example using MPLAB C30
unsigned long progAddr = 0xXXXXXX; unsigned int offset;
//Set up pointer to the first memory location to be written TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR offset = progAddr & 0xFFFF; // Initialize lower word of address __builtin_tblwtl(offset, 0x0000); // Set base address of erase block // with dummy latch write // Initialize NVMCON // // // // Block all interrupts with priority <7 for next 5 instructions C30 function to perform unlock sequence and set WR
NVMCON = 0x4042; asm("DISI #5"); __builtin_write_NVM();
EXAMPLE 5-3:
LOADING THE WRITE BUFFERS - ASSEMBLY LANGUAGE CODE
; Set up NVMCON for row programming operations MOV #0x4001, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 1st_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch * * * ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0] ; Write PM high byte into program latch
2010 Microchip Technology Inc.
DS39940D-page 59
PIC24FJ64GB004 FAMILY
EXAMPLE 5-4: LOADING THE WRITE BUFFERS - `C' LANGUAGE CODE
// C example using MPLAB C30 #define NUM_INSTRUCTION_PER_ROW 64 unsigned int offset; unsigned int i; unsigned long progAddr = 0xXXXXXX; unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; //Set up NVMCON for row programming NVMCON = 0x4001;
// Address of row to write // Buffer of data to write
// Initialize NVMCON
//Set up pointer to the first memory location to be written TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR offset = progAddr & 0xFFFF; // Initialize lower word of address //Perform TBLWT instructions to write necessary number of latches for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++) { __builtin_tblwtl(offset, progData[i++]); // Write to address low word __builtin_tblwth(offset, progData[i]); // Write to upper byte offset = offset + 2; // Increment address }
EXAMPLE 5-5:
DISI MOV MOV MOV MOV BSET NOP NOP BTSC BRA #5
INITIATING A PROGRAMMING SEQUENCE - ASSEMBLY LANGUAGE CODE
; Block all interrupts with priority <7 ; for next 5 instructions ; ; ; ; ; ; ; ; Write the 55 key Write the AA key Start the erase sequence
#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR
NVMCON, #15 $-2
and wait for it to be completed
EXAMPLE 5-6:
INITIATING A PROGRAMMING SEQUENCE - `C' LANGUAGE CODE
// C example using MPLAB C30 asm("DISI #5"); // Block all interrupts with priority < 7 // for next 5 instructions // Perform unlock sequence and set WR
__builtin_write_NVM();
DS39940D-page 60
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY
If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to `0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-7).
EXAMPLE 5-7:
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY - ASSEMBLY LANGUAGE CODE
; Setup a pointer to data Program Memory MOV #tblpage(PROG_ADDR), W0 ; MOV W0, TBLPAG ;Initialize PM Page Boundary SFR MOV #tbloffset(PROG_ADDR), W0 ;Initialize a register with program memory address MOV MOV TBLWTL TBLWTH #LOW_WORD, W2 #HIGH_BYTE, W3 W2, [W0] W3, [W0++] ; ; ; Write PM low word into program latch ; Write PM high byte into program latch
; Setup NVMCON for programming one word to data Program Memory MOV #0x4003, W0 ; MOV W0, NVMCON ; Set NVMOP bits to 0011 DISI MOV MOV MOV MOV BSET NOP NOP #5 #0x55, W0 W0, NVMKEY #0xAA, W0 W0, NVMKEY NVMCON, #WR ; Disable interrupts while the KEY sequence is written ; Write the key sequence
; Start the write cycle ; Insert two NOPs after the erase ; Command is asserted
EXAMPLE 5-8:
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY - `C' LANGUAGE CODE
// C example using MPLAB C30 unsigned unsigned unsigned unsigned int offset; long progAddr = 0xXXXXXX; int progDataL = 0xXXXX; char progDataH = 0xXX;
// Address of word to program // Data to program lower word // Data to program upper byte
//Set up NVMCON for word programming NVMCON = 0x4003;
// Initialize NVMCON
//Set up pointer to the first memory location to be written TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR offset = progAddr & 0xFFFF; // Initialize lower word of address //Perform TBLWT instructions to write latches __builtin_tblwtl(offset, progDataL); __builtin_tblwth(offset, progDataH); asm("DISI #5"); __builtin_write_NVM();
// // // // // //
Write to address low word Write to upper byte Block interrupts with priority < 7 for next 5 instructions C30 function to perform unlock sequence and set WR
2010 Microchip Technology Inc.
DS39940D-page 61
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 62
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
6.0
Note:
RESETS
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 7. "Reset" (DS39712).
Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets. Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.
The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources: * * * * * * * * * POR: Power-on Reset MCLR: Pin Reset SWR: RESET Instruction WDT: Watchdog Timer Reset BOR: Brown-out Reset CM: Configuration Mismatch Reset TRAPR: Trap Conflict Reset IOPUWR: Illegal Opcode Reset UWR: Uninitialized W Register Reset
All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits, except for the BOR and POR bits (RCON<1:0>), which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur. The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet. Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.
A simplified block diagram of the Reset module is shown in Figure 6-1.
FIGURE 6-1:
RESET SYSTEM BLOCK DIAGRAM
RESET Instruction Glitch Filter
MCLR WDT Module Sleep or Idle VDD Rise Detect VDD Brown-out Reset BOR POR SYSRST
Enable Voltage Regulator Trap Conflict Illegal Opcode Configuration Mismatch Uninitialized W Register
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 63
PIC24FJ64GB004 FAMILY
REGISTER 6-1:
R/W-0, HS TRAPR bit 15 R/W-0, HS EXTR bit 7
RCON: RESET CONTROL REGISTER(1)
U-0 -- U-0 -- U-0 -- R/CO-0, HS DPSLP R/W-0, HS CM R/W-0 PMSLP bit 8 R/W-1, HS POR bit 0
R/W-0, HS IOPUWR
R/W-0, HS SWR
R/W-0 SWDTEN(2)
R/W-0, HS WDTO
R/W-0, HS SLEEP
R/W-0, HS IDLE
R/W-1, HS BOR
Legend: R = Readable bit -n = Value at POR bit 15
CO = Clearable Only bit W = Writable bit `1' = Bit is set
HS = Hardware Settable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 14
bit 13-11 bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or uninitialized W Reset has not occurred Unimplemented: Read as `0' DPSLP: Deep Sleep Mode Flag bit 1 = Deep Sleep has occurred 0 = Deep Sleep has not occurred CM: Configuration Word Mismatch Reset Flag bit 1 = A Configuration Word Mismatch Reset has occurred 0 = A Configuration Word Mismatch Reset has not occurred PMSLP: Program Memory Power During Sleep bit 1 = Program memory bias voltage remains powered during Sleep 0 = Program memory bias voltage is powered down during Sleep and the voltage regulator enters Standby mode EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed SWDTEN: Software Enable/Disable of WDT bit(2) 1 = WDT is enabled 0 = WDT is disabled WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred SLEEP: Wake From Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode IDLE: Wake-up From Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. If the FWDTEN Configuration bit is `1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
Note 1: 2:
DS39940D-page 64
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 6-1:
bit 1
RCON: RESET CONTROL REGISTER(1) (CONTINUED)
bit 0
BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred. Note that BOR is also set after a Power-on Reset. 0 = A Brown-out Reset has not occurred POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset. If the FWDTEN Configuration bit is `1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
Note 1: 2:
TABLE 6-1:
RESET FLAG BIT OPERATION
Setting Event Trap Conflict Event Illegal Opcode or Uninitialized W Register Access Configuration Mismatch Reset MCLR Reset RESET Instruction WDT Time-out PWRSAV #SLEEP Instruction PWRSAV #IDLE Instruction POR, BOR POR PWRSAV #SLEEP instruction with DSCON set Clearing Event POR POR POR POR POR PWRSAV Instruction, POR POR POR -- -- POR
Flag Bit TRAPR (RCON<15>) IOPUWR (RCON<14>) CM (RCON<9>) EXTR (RCON<7>) SWR (RCON<6>) WDTO (RCON<4>) SLEEP (RCON<3>) IDLE (RCON<2>) BOR (RCON<1>) POR (RCON<0>) DPSLP (RCON<10>) Note:
All Reset flag bits may be set or cleared by the user software.
6.1
Clock Source Selection at Reset
6.2
Device Reset Times
If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator configuration bits. Refer to Section 8.0 "Oscillator Configuration" for further details.
The Reset times for various types of device Reset are summarized in Table 6-3. Note that the System Reset signal, SYSRST, is released after the POR and PWRT delay times expire. The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times. The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.
TABLE 6-2:
OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)
Clock Source Determinant FNOSC Configuration bits (CW2<10:8>) COSC Control bits (OSCCON<14:12>)
Reset Type POR BOR MCLR WDTO SWR
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 65
PIC24FJ64GB004 FAMILY
TABLE 6-3:
Reset Type POR(6) EC FRC, FRCDIV LPRC ECPLL FRCPLL XT, HS, SOSC XTPLL, HSPLL BOR EC FRC, FRCDIV LPRC ECPLL FRCPLL XT, HS, SOSC XTPLL, HSPLL All Others Note 1: 2: 3: 4: 5: 6: 7: Any Clock
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS
Clock Source SYSRST Delay TPOR + TRST + TPWRT TPOR + TRST + TPWRT TPOR + TRST + TPWRT TPOR + TRST + TPWRT TPOR + TRST + TPWRT TPOR+ TRST + TPWRT TPOR + TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST + TPWRT TRST System Clock Delay -- TFRC TLPRC TLOCK TFRC + TLOCK TOST TOST + TLOCK -- TFRC TLPRC TLOCK TFRC + TLOCK TOST TFRC + TLOCK -- Notes 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 5 1, 2, 3, 4, 5 1, 2, 3, 6 1, 2, 3, 5, 6 2, 3 2, 3, 4 2, 3, 4 2, 3, 5 2, 3, 4, 5 2, 3, 6 2, 3, 4, 5 2
TPOR = Power-on Reset delay. TRST = Internal State Reset time. TPWRT = 64 ms nominal if regulator is disabled (DISVREG tied to VDD). TFRC and TLPRC = RC Oscillator start-up times. TLOCK = PLL lock time. TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system. If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid. For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".
Note:
DS39940D-page 66
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
6.2.1 POR AND LONG OSCILLATOR START-UP TIMES
6.3
Special Function Register Reset States
The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released: * The oscillator circuit has not begun to oscillate. * The Oscillator Start-up Timer has not expired (if a crystal oscillator is used). * The PLL has not achieved a lock (if PLL is used). The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.
Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual. The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2); see Table 6-2. The RCFGCAL and NVMCON registers are only affected by a POR.
6.2.2
FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS
6.4
Deep Sleep BOR (DSBOR)
If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).
Deep Sleep BOR is a very low-power BOR circuitry, used when the device is in Deep Sleep mode. Due to low-current consumption, accuracy may vary. The DSBOR trip point is around 2.0V. DSBOR is enabled by configuring CW4 = 1. DSBOR will re-arm the POR to ensure the device will reset if VDD drops below the POR threshold.
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 67
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 68
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
7.0
Note:
INTERRUPT CONTROLLER
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707).
7.1.1
ALTERNATE INTERRUPT VECTOR TABLE
The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features: Up to 8 processor exceptions and software traps 7 user-selectable priority levels Interrupt Vector Table (IVT) with up to 118 vectors A unique vector for each interrupt or exception source * Fixed priority within a specified user priority level * Alternate Interrupt Vector Table (AIVT) for debug support * Fixed interrupt entry and return latencies * * * *
The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.
7.2
Reset Sequence
7.1
Interrupt Vector Table
The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address. PIC24FJ64GB004 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.
A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The microcontroller then begins program execution at location 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine. Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.
2010 Microchip Technology Inc.
DS39940D-page 69
PIC24FJ64GB004 FAMILY
FIGURE 7-1: PIC24F INTERRUPT VECTOR TABLE
Reset - GOTO Instruction Reset - GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 -- -- -- Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 -- -- -- Interrupt Vector 116 Interrupt Vector 117 Reserved Reserved Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 -- -- -- Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 -- -- -- Interrupt Vector 116 Interrupt Vector 117 Start of Code 000000h 000002h 000004h
000014h
Decreasing Natural Order Priority
00007Ch 00007Eh 000080h
Interrupt Vector Table (IVT)(1)
0000FCh 0000FEh 000100h 000102h
000114h
Alternate Interrupt Vector Table (AIVT)(1) 00017Ch 00017Eh 000180h
0001FEh 000200h
Note 1:
See Table 7-2 for the interrupt vector list.
TABLE 7-1:
0 1 2 3 4 5 6 7
TRAP VECTOR DETAILS
IVT Address 000004h 000006h 000008h 00000Ah 00000Ch 00000Eh 000010h 000012h AIVT Address 000104h 000106h 000108h 00010Ah 00010Ch 00010Eh 000110h 000112h Reserved Oscillator Failure Address Error Stack Error Math Error Reserved Reserved Reserved
2010 Microchip Technology Inc.
Vector Number
Trap Source
DS39940D-page 70
PIC24FJ64GB004 FAMILY
TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS
Vector Number 13 18 67 77 0 20 29 17 16 50 49 1 5 37 38 39 19 72 2 6 25 26 41 45 62 9 10 32 33 3 7 8 27 28 65 11 12 66 30 31 86 IVT Address 00002Eh 000038h 00009Ah 0000AEh 000014h 00003Ch 00004Eh 000036h 000034h 000078h 000076h 000016h 00001Eh 00005Eh 000060h 000062h 00003Ah 0000A4h 000018h 000020h 000046h 000048h 000066h 00006Eh 000090h 000026h 000028h 000054h 000056h 00001Ah 000022h 000024h 00004Ah 00004Ch 000096h 00002Ah 00002Ch 000098h 000050h 000052h 0000C0h AIVT Address 00012Eh 000138h 00019Ah 0001AEh 000114h 00013Ch 00014Eh 000136h 000134h 000178h 000176h 000116h 00011Eh 00015Eh 000160h 000162h 00013Ah 0001A4h 000118h 000120h 000146h 000148h 000166h 00016Eh 000190h 000126h 000128h 000154h 000156h 00011Ah 000122h 000124h 00014Ah 00014Ch 000196h 00012Ah 00012Ch 000198h 000150h 000152h 0001C0h Interrupt Bit Locations Flag IFS0<13> IFS1<2> IFS4<3> IFS4<13> IFS0<0> IFS1<4> IFS1<13> IFS1<1> IFS1<0> IFS3<2> IFS3<1> IFS0<1> IFS0<5> IFS2<5> IFS2<6> IFS2<7> IFS1<3> IFS4<8> IFS0<2> IFS0<6> IFS1<9> IFS1<10> IFS2<9> IFS2<13> IFS3<14> IFS0<9> IFS0<10> IFS2<0> IFS2<1> IFS0<3> IFS0<7> IFS0<8> IFS1<11> IFS1<12> IFS4<1> IFS0<11> IFS0<12> IFS4<2> IFS1<14> IFS1<15> IFS5<6> Enable IEC0<13> IEC1<2> IEC4<3> IEC4<13> IEC0<0> IEC1<4> IEC1<13> IEC1<1> IEC1<0> IEC3<2> IEC3<1> IEC0<1> IEC0<5> IEC2<5> IEC2<6> IEC2<7> IEC1<3> IEC4<8> IEC0<2> IEC0<6> IEC1<9> IEC1<10> IEC2<9> IEC2<13> IEC3<14> IEC0<9> IEC0<10> IEC2<0> IEC2<1> IEC0<3> IEC0<7> IEC0<8> IEC1<11> IEC1<12> IEC4<1> IEC0<11> IEC0<12> IEC4<2> IEC1<14> IEC1<15> IEC5<6> Priority IPC3<6:4> IPC4<10:8> IPC16<14:12> IPC19<6:4> IPC0<2:0> IPC5<2:0> IPC7<6:4> IPC4<6:4> IPC4<2:0> IPC12<10:8> IPC12<6:4> IPC0<6:4> IPC1<6:4> IPC9<6:4> IPC9<10:8> IPC9<14:12> IPC4<14:12> IPC18<2:0> IPC0<10:8> IPC1<10:8> IPC6<6:4> IPC6<10:8> IPC10<6:4> IPC11<6:4> IPC15<10:8> IPC2<6:4> IPC2<10:8> IPC8<2:0> IPC8<6:4> IPC0<14:12> IPC1<14:12> IPC2<2:0> IPC6<14:12> IPC7<2:0> IPC16<6:4> IPC2<14:12> IPC3<2:0> IPC16<10:8> IPC7<10:8> IPC7<14:12> IPC21<10:8> Interrupt Source ADC1 Conversion Done Comparator Event CRC Generator CTMU Event External Interrupt 0 External Interrupt 1 External Interrupt 2 I2C1 Master Event I2C1 Slave Event I2C2 Master Event I2C2 Slave Event Input Capture 1 Input Capture 2 Input Capture 3 Input Capture 4 Input Capture 5 Input Change Notification LVD Low-Voltage Detect Output Compare 1 Output Compare 2 Output Compare 3 Output Compare 4 Output Compare 5 Parallel Master Port Real-Time Clock/Calendar SPI1 Error SPI1 Event SPI2 Error SPI2 Event Timer1 Timer2 Timer3 Timer4 Timer5 UART1 Error UART1 Receiver UART1 Transmitter UART2 Error UART2 Receiver UART2 Transmitter USB Interrupt
2010 Microchip Technology Inc.
DS39940D-page 71
PIC24FJ64GB004 FAMILY
7.3 Interrupt Control and Status Registers
The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>). Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>); these indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits. The CORCON register contains the IPL3 bit, which, together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software. The interrupt controller has the Interrupt Controller Test Register (INTTREG) that displays the status of the interrupt controller. When an interrupt request occurs, its associated vector number and the new interrupt priority level are latched into INTTREG. This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors - such as when ISR remapping is used in bootloader applications. It also could be used to check if another interrupt is pending while in an ISR. All interrupt registers are described in Register 7-1 through Register 7-35, on the following pages.
The PIC24FJ64GB004 family of devices implements the following registers for the interrupt controller: * * * * * INTCON1 INTCON2 IFS0 through IFS5 IEC0 through IEC5 IPC0 through IPC21 (except IPC13, IPC14 and IPC17) * INTTREG Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table. The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software. The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.
DS39940D-page 72
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-1:
U-0 -- bit 15 R/W-0 IPL2 bit 7 Legend: R = Readable bit -n = Value at POR bit 7-5 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
(2,3)
SR: ALU STATUS REGISTER (IN CPU)
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R-0 DC(1) bit 8 R/W-0 IPL1(2,3) R/W-0 IPL0(2,3) R-0 RA(1) R/W-0 N(1) R/W-0 OV(1) R/W-0 Z(1) R/W-0 C(1) bit 0
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3) 111 = CPU interrupt priority level is 7 (15). User interrupts disabled. 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions. The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1. The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
Note 1: 2: 3:
REGISTER 7-2:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 3
CORCON: CPU CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 U-0 -- U-0 -- U-0 -- R/C-0 IPL3(2) R/W-0 PSV(1) U-0 -- U-0 -- bit 0 C = Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
IPL3: CPU Interrupt Priority Level Status bit(2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions. The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
Note 1: 2:
2010 Microchip Technology Inc.
DS39940D-page 73
PIC24FJ64GB004 FAMILY
REGISTER 7-3:
R/W-0 NSTDIS bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 MATHERR R/W-0 ADDRERR R/W-0 STKERR R/W-0 OSCFAIL U-0 -- bit 0
INTCON1: INTERRUPT CONTROL REGISTER 1
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled Unimplemented: Read as `0' MATHERR: Arithmetic Error Trap Status bit 1 = Overflow trap has occurred 0 = Overflow trap has not occurred ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred Unimplemented: Read as `0'
bit 14-5 bit 4
bit 3
bit 2
bit 1
bit 0
DS39940D-page 74
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-4:
R/W-0 ALTIVT bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 INT2EP R/W-0 INT1EP
INTCON2: INTERRUPT CONTROL REGISTER 2
R-0 DISI U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 INT0EP bit 0
ALTIVT: Enable Alternate Interrupt Vector Table (AIVT) bit 1 = Use Alternate Interrupt Vector Table 0 = Use standard (default) Interrupt Vector Table (IVT) DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active Unimplemented: Read as `0' INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge INT0EP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge
bit 14
bit 13-3 bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 75
PIC24FJ64GB004 FAMILY
REGISTER 7-5:
U-0 -- bit 15 R/W-0 T2IF bit 7
IFS0: INTERRUPT FLAG STATUS REGISTER 0
U-0 -- R/W-0 AD1IF R/W-0 U1TXIF R/W-0 U1RXIF R/W-0 SPI1IF R/W-0 SPF1IF R/W-0 T3IF bit 8 R/W-0 INT0IF bit 0
R/W-0 OC2IF
R/W-0 IC2IF
U-0 --
R/W-0 T1IF
R/W-0 OC1IF
R/W-0 IC1IF
Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4 bit 3
bit 2
bit 1
bit 0
Unimplemented: Read as `0' AD1IF: A/D Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U1RXIF: UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred SPI1IF: SPI1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred SPF1IF: SPI1 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred T3IF: Timer3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred T2IF: Timer2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' T1IF: Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred INT0IF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
DS39940D-page 76
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-6:
R/W-0 U2TXIF bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 INT1IF R/W-0 CNIF R/W-0 CMIF R/W-0 MI2C1IF
IFS1: INTERRUPT FLAG STATUS REGISTER 1
R/W-0 U2RXIF R/W-0 INT2IF R/W-0 T5IF R/W-0 T4IF R/W-0 OC4IF R/W-0 OC3IF U-0 -- bit 8 R/W-0 SI2C1IF bit 0
U2TXIF: UART2 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U2RXIF: UART2 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred T5IF: Timer5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred T4IF: Timer4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred OC3IF: Output Compare Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred CNIF: Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred CMIF: Comparator Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred MI2C1IF: Master I2C1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 14
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8-5 bit 4
bit 3
bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 77
PIC24FJ64GB004 FAMILY
REGISTER 7-7:
U-0 -- bit 15 R/W-0 IC5IF bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 IC4IF R/W-0 IC3IF U-0 -- U-0 -- U-0 -- R/W-0 SPI2IF
IFS2: INTERRUPT FLAG STATUS REGISTER 2
U-0 -- R/W-0 PMPIF U-0 -- U-0 -- U-0 -- R/W-0 OC5IF U-0 -- bit 8 R/W-0 SPF2IF bit 0
Unimplemented: Read as `0' PMPIF: Parallel Master Port Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' OC5IF: Output Compare Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' IC5IF: Input Capture Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred IC4IF: Input Capture Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' SPI2IF: SPI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred SPF2IF: SPI2 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 12-10 bit 9
bit 8 bit 7
bit 6
bit 5
bit 4-2 bit 1
bit 0
DS39940D-page 78
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-8:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-0, MI2C2IF R/W-0 SI2C2IF U-0 -- bit 0
IFS3: INTERRUPT FLAG STATUS REGISTER 3
R/W-0 RTCIF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' MI2C2IF: Master I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0'
bit 13-3 bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 79
PIC24FJ64GB004 FAMILY
REGISTER 7-9:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- R/W-0 CRCIF R/W-0 U2ERIF R/W-0 U1ERIF U-0 -- bit 0
IFS4: INTERRUPT FLAG STATUS REGISTER 4
U-0 -- R/W-0 CTMUIF U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 LVDIF bit 8
Unimplemented: Read as `0' CTMUIF: CTMU Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' LVDIF: Low-Voltage Detect Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0' CRCIF: CRC Generator Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U2ERIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred U1ERIF: UART1 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0'
bit 12-9 bit 8
bit 7-4 bit 3
bit 2
bit 1
bit 0
DS39940D-page 80
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-10:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 USB1IF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IFS5: INTERRUPT FLAG STATUS REGISTER 5
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' USB1IF: USB1 (USB OTG) Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred Unimplemented: Read as `0'
bit 5-0
2010 Microchip Technology Inc.
DS39940D-page 81
PIC24FJ64GB004 FAMILY
REGISTER 7-11:
U-0 -- bit 15 R/W-0 T2IE bit 7
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
U-0 -- R/W-0 AD1IE R/W-0 U1TXIE R/W-0 U1RXIE R/W-0 SPI1IE R/W-0 SPF1IE R/W-0 T3IE bit 8 R/W-0 INT0IE bit 0
R/W-0 OC2IE
R/W-0 IC2IE
U-0 --
R/W-0 T1IE
R/W-0 OC1IE
R/W-0 IC1IE
Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4 bit 3
bit 2
bit 1
bit 0
Unimplemented: Read as `0' AD1IE: A/D Conversion Complete Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled U1TXIE: UART1 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled U1RXIE: UART1 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled SPI1IE: SPI1 Transfer Complete Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled SPF1IE: SPI1 Fault Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled T2IE: Timer2 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled IC2IE: Input Capture Channel 2 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled INT0IE: External Interrupt 0 Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
DS39940D-page 82
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-12:
R/W-0 U2TXIE bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15
IEC1: INTERRUPT ENABLE CONTROL REGISTER 1
R/W-0 INT2IE(1) R/W-0 T5IE R/W-0 T4IE R/W-0 OC4IE R/W-0 OC3IE U-0 -- bit 8 U-0 -- U-0 -- R/W-0 INT1IE(1) R/W-0 CNIE R/W-0 CMIE R/W-0 MI2C1IE R/W-0 SI2C1IE bit 0
R/W-0 U2RXIE
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 14
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8-5 bit 4
bit 3
bit 2
bit 1
bit 0
U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled INT2IE: External Interrupt 2 Enable bit(1) 1 = Interrupt request is enabled 0 = Interrupt request is not enabled T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' INT1IE: External Interrupt 1 Enable bit(1) 1 = Interrupt request is enabled 0 = Interrupt request is not enabled CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled CMIE: Comparator Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled MI2C1IE: Master I2C1 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled SI2C1IE: Slave I2C1 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or PRIx pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 83
PIC24FJ64GB004 FAMILY
REGISTER 7-13:
U-0 -- bit 15 R/W-0 IC5IE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 IC4IE R/W-0 IC3IE U-0 -- U-0 -- U-0 -- R/W-0 SPI2IE
IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
U-0 -- R/W-0 PMPIE U-0 -- U-0 -- U-0 -- R/W-0 OC5IE U-0 -- bit 8 R/W-0 SPF2IE bit 0
Unimplemented: Read as `0' PMPIE: Parallel Master Port Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' OC5IE: Output Compare Channel 5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' IC5IE: Input Capture Channel 5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled IC4IE: Input Capture Channel 4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled IC3IE: Input Capture Channel 3 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled SPF2IE: SPI2 Fault Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 12-10 bit 9
bit 8 bit 7
bit 6
bit 5
bit 4-2 bit 1
bit 0
DS39940D-page 84
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-14:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 MI2C2IE R/W-0 SI2C2IE U-0 -- bit 0
IEC3: INTERRUPT ENABLE CONTROL REGISTER 3
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
R/W-0 RTCIE
Unimplemented: Read as `0' RTCIE: Real-Time Clock/Calendar Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' MI2C2IE: Master I2C2 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled SI2C2IE: Slave I2C2 Event Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0'
bit 13-3 bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 85
PIC24FJ64GB004 FAMILY
REGISTER 7-15:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- R/W-0 CRCIE R/W-0 U2ERIE R/W-0 U1ERIE U-0 -- bit 0
IEC4: INTERRUPT ENABLE CONTROL REGISTER 4
U-0 -- R/W-0 CTMUIE U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 LVDIE bit 8
Unimplemented: Read as `0' CTMUIE: CTMU Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' LVDIE: Low-Voltage Detect Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0' CRCIE: CRC Generator Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled U2ERIE: UART2 Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled U1ERIE: UART1 Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0'
bit 12-9 bit 8
bit 7-4 bit 3
bit 2
bit 1
bit 0
DS39940D-page 86
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-16:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 USB1IE U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IEC5: INTERRUPT ENABLE CONTROL REGISTER 5
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' USB1IE: USB1 (USB OTG) Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled Unimplemented: Read as `0'
bit 5-0
2010 Microchip Technology Inc.
DS39940D-page 87
PIC24FJ64GB004 FAMILY
REGISTER 7-17:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 IC1IP2 R/W-0 IC1IP1 R/W-0 IC1IP0 U-0 -- R/W-1 INT0IP2 R/W-0 INT0IP1
IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0
R/W-0 T1IP1 R/W-0 T1IP0 U-0 -- R/W-1 OC1IP2 R/W-0 OC1IP1 R/W-0 OC1IP0 bit 8 R/W-0 INT0IP0 bit 0
R/W-1 T1IP2
Unimplemented: Read as `0' T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' INT0IP<2:0>: External Interrupt 0 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 11 bit 10-8
bit 7 bit 6-4
bit 3 bit 2-0
DS39940D-page 88
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-18:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 IC2IP2 R/W-0 IC2IP1 R/W-0 IC2IP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1
R/W-0 T2IP1 R/W-0 T2IP0 U-0 -- R/W-1 OC2IP2 R/W-0 OC2IP1 R/W-0 OC2IP0 bit 8
R/W-1 T2IP2
Unimplemented: Read as `0' T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 11 bit 10-8
bit 7 bit 6-4
bit 3-0
2010 Microchip Technology Inc.
DS39940D-page 89
PIC24FJ64GB004 FAMILY
REGISTER 7-19:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 SPF1IP2 R/W-0 SPF1IP1 R/W-0 SPF1IP0 U-0 -- R/W-1 T3IP2 R/W-0 T3IP1
IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2
R/W-0 U1RXIP1 R/W-0 U1RXIP0 U-0 -- R/W-1 SPI1IP2 R/W-0 SPI1IP1 R/W-0 SPI1IP0 bit 8 R/W-0 T3IP0 bit 0
R/W-1 U1RXIP2
Unimplemented: Read as `0' U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' SPI1IP<2:0>: SPI1 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' T3IP<2:0>: Timer3 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 11 bit 10-8
bit 7 bit 6-4
bit 3 bit 2-0
DS39940D-page 90
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-20:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6-4 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 AD1IP2 R/W-0 AD1IP1 R/W-0 AD1IP0 U-0 -- R/W-1 U1TXIP2 R/W-0 U1TXIP1
IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 U1TXIP0 bit 0
Unimplemented: Read as `0' AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 3 bit 2-0
2010 Microchip Technology Inc.
DS39940D-page 91
PIC24FJ64GB004 FAMILY
REGISTER 7-21:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 MI2C1IP2 R/W-0 MI2C1IP1 R/W-0 MI2C1IP0 U-0 -- R/W-1 SI2C1IP2 R/W-0 SI2C1IP1
IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4
R/W-0 CNIP1 R/W-0 CNIP0 U-0 -- R/W-1 CMIP2 R/W-0 CMIP1 R/W-0 CMIP0 bit 8 R/W-0 SI2C1IP0 bit 0
R/W-1 CNIP2
Unimplemented: Read as `0' CNIP<2:0>: Input Change Notification Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' CMIP<2:0>: Comparator Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' SI2C1IP<2:0>: Slave I2C1 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 11 bit 10-8
bit 7 bit 6-4
bit 3 bit 2-0
DS39940D-page 92
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-22:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-3 bit 2-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-1 INT1IP2 R/W-0 INT1IP1
IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 INT1IP0 bit 0
Unimplemented: Read as `0' INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
2010 Microchip Technology Inc.
DS39940D-page 93
PIC24FJ64GB004 FAMILY
REGISTER 7-23:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 OC3IP2 R/W-0 OC3IP1 R/W-0 OC3IP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
R/W-0 T4IP1 R/W-0 T4IP0 U-0 -- R/W-1 OC4IP2 R/W-0 OC4IP1 R/W-0 OC4IP0 bit 8
R/W-1 T4IP2
Unimplemented: Read as `0' T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 11 bit 10-8
bit 7 bit 6-4
bit 3-0
DS39940D-page 94
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-24:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 INT2IP2 R/W-0 INT2IP1 R/W-0 INT2IP0 U-0 -- R/W-1 T5IP2 R/W-0 T5IP1
IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7
R/W-0 U2TXIP1 R/W-0 U2TXIP0 U-0 -- R/W-1 U2RXIP2 R/W-0 U2RXIP1 R/W-0 U2RXIP0 bit 8 R/W-0 T5IP0 bit 0
R/W-1 U2TXIP2
Unimplemented: Read as `0' U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' T5IP<2:0>: Timer5 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 11 bit 10-8
bit 7 bit 6-4
bit 3 bit 2-0
2010 Microchip Technology Inc.
DS39940D-page 95
PIC24FJ64GB004 FAMILY
REGISTER 7-25:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6-4 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 SPI2IP2 R/W-0 SPI2IP1 R/W-0 SPI2IP0 U-0 -- R/W-1 SPF2IP2 R/W-0 SPF2IP1
IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 SPF2IP0 bit 0
Unimplemented: Read as `0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
bit 3 bit 2-0
DS39940D-page 96
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-26:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 IC3IP2 R/W-0 IC3IP1 R/W-0 IC3IP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9
R/W-0 IC5IP1 R/W-0 IC5IP0 U-0 -- R/W-1 IC4IP2 R/W-0 IC4IP1 R/W-0 IC4IP0 bit 8
R/W-1 IC5IP2
Unimplemented: Read as `0' IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 11 bit 10-8
bit 7 bit 6-4
bit 3-0
2010 Microchip Technology Inc.
DS39940D-page 97
PIC24FJ64GB004 FAMILY
REGISTER 7-27:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6-4 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 OC5IP2 R/W-0 OC5IP1 R/W-0 OC5IP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 3-0
DS39940D-page 98
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-28:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6-4 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 PMPIP2 R/W-0 PMPIP1 R/W-0 PMPIP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' PMPIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 3-0
2010 Microchip Technology Inc.
DS39940D-page 99
PIC24FJ64GB004 FAMILY
REGISTER 7-29:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10-8 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 SI2C2IP2 R/W-0 SI2C2IP1 R/W-0 SI2C2IP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12
U-0 -- U-0 -- U-0 -- U-0 -- R/W-1 MI2C2IP2 R/W-0 MI2C2IP1 R/W-0 MI2C2IP0 bit 8
Unimplemented: Read as `0' MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 7 bit 6-4
bit 3-0
DS39940D-page 100
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-30:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10-8 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15
U-0 -- U-0 -- U-0 -- U-0 -- R/W-1 RTCIP2 R/W-0 RTCIP1 R/W-0 RTCIP0 bit 8
Unimplemented: Read as `0' RTCIP<2:0>: Real-Time Clock/Calendar Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 7-0
2010 Microchip Technology Inc.
DS39940D-page 101
PIC24FJ64GB004 FAMILY
REGISTER 7-31:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-1 U1ERIP2 R/W-0 U1ERIP1 R/W-0 U1ERIP0 U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16
R/W-0 CRCIP1 R/W-0 CRCIP0 U-0 -- R/W-1 U2ERIP2 R/W-0 U2ERIP1 R/W-0 U2ERIP0 bit 8
R/W-1 CRCIP2
Unimplemented: Read as `0' CRCIP<2:0>: CRC Generator Error Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' U2ERIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0' U1ERIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 11 bit 10-8
bit 7 bit 6-4
bit 3-0
DS39940D-page 102
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-32:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-3 bit 2-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-1 LVDIP2 R/W-0 LVDIP1
IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 LVDIP0 bit 0
Unimplemented: Read as `0' LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
REGISTER 7-33:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6-4
IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
R/W-1 CTMUIP2
R/W-0 CTMUIP1
R/W-0 CTMUIP0
U-0 --
U-0 --
U-0 --
U-0 -- bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' CTMUIP<2:0>: CTMU Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 3-0
2010 Microchip Technology Inc.
DS39940D-page 103
PIC24FJ64GB004 FAMILY
REGISTER 7-34:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10-8 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21
U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 USB1IP2 R/W-0 USB1IP1 R/W-0 USB1IP0 bit 8
Unimplemented: Read as `0' USB1IP<2:0>: USB Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) * * * 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as `0'
bit 7-0
DS39940D-page 104
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 7-35:
R-0 CPUIRQ bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R-0 VECNUM6 R-0 VECNUM5 R-0 VECNUM4 R-0 VECNUM3 R-0 VECNUM2 R-0 VECNUM1 R-0 VECNUM0 bit 0
INTTREG: INTERRUPT CONTROL AND STATUS REGISTER
U-0 -- R/W-0 VHOLD U-0 -- R-0 ILR3 R-0 ILR2 R-0 ILR1 R-0 ILR0 bit 8
CPUIRQ: Interrupt Request from Interrupt Controller CPU bit 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority 0 = No interrupt request is unacknowledged Unimplemented: Read as `0' VHOLD: Vector Number Capture Configuration bit 1 = The VECNUM bits contain the value of the highest priority pending interrupt 0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending) Unimplemented: Read as `0' ILR<3:0>: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15 * * * 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0 Unimplemented: Read as `0' VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8) 0111111 = Interrupt vector pending is Number 135 * * * 0000001 = Interrupt vector pending is Number 9 0000000 = Interrupt vector pending is Number 8
bit 14 bit 13
bit 12 bit 11-8
bit 7 bit 6-0
2010 Microchip Technology Inc.
DS39940D-page 105
PIC24FJ64GB004 FAMILY
7.4
7.4.1
1. 2.
Interrupt Setup Procedures
INITIALIZATION
7.4.3
TRAP SERVICE ROUTINE
To configure an interrupt source: Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value. Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.
A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.
7.4.4
INTERRUPT DISABLE
All user interrupts can be disabled using the following procedure: 1. 2. Push the current SR value onto the software stack using the PUSH instruction. Force the CPU to Priority Level 7 by inclusive ORing the value OEh with SRL.
To enable user interrupts, the POP instruction may be used to restore the previous SR value. Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Level 8-15) cannot be disabled. The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.
3. 4.
Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.
7.4.2
INTERRUPT SERVICE ROUTINE
The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., `C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.
DS39940D-page 106
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
8.0
Note:
OSCILLATOR CONFIGURATION
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 6. "Oscillator" (DS39700).
The oscillator system for PIC24FJ64GB004 family devices has the following features: * A total of four external and internal oscillator options as clock sources, providing 11 different clock modes
* An on-chip USB PLL block to provide a stable 48 MHz clock for the USB module, as well as a range of frequency options for the system clock * Software-controllable switching between various clock sources * Software-controllable postscaler for selective clocking of CPU for system power savings * A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown * A separate and independently configurable system clock output for synchronizing external hardware A simplified diagram of the oscillator system is shown in Figure 8-1.
FIGURE 8-1:
PIC24FJ64GB004 FAMILY CLOCK DIAGRAM
PIC24FJ64GB004 Family
48 MHz USB Clock Primary Oscillator XT, HS, EC USB PLL XTPLL, HSPLL PLL & DIV PLLDIV<2:0> CPDIV<1:0> 8 MHz 4 MHz FRCDIV Peripherals ECPLL,FRCPLL REFOCON<15:8> Reference Clock Generator REFO
OSCO
OSCI
FRC Oscillator
8 MHz (nominal)
Postscaler CLKDIV<10:8>
FRC
CLKO
Postscaler
CPU
LPRC Oscillator
LPRC 31 kHz (nominal)
Secondary Oscillator SOSCO SOSCEN Enable Oscillator SOSC
CLKDIV<14:12>
SOSCI
Clock Control Logic Fail-Safe Clock Monitor
WDT, PWRT Clock Source Option for Other Modules
2010 Microchip Technology Inc.
DS39940D-page 107
PIC24FJ64GB004 FAMILY
8.1 CPU Clocking Scheme 8.2 Initial Configuration on POR
The system clock source can be provided by one of four sources: * Primary Oscillator (POSC) on the OSCI and OSCO pins * Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins * Fast Internal RC (FRC) Oscillator * Low-Power Internal RC (LPRC) Oscillator The primary oscillator and FRC sources have the option of using the internal USB PLL block, which generates both the USB module clock and a separate system clock from the 96 MHz PLL. Refer to Section 8.5 "Oscillator Modes and USB Operation" for additional information. The Fast Internal RC (FRC) provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies. The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator. The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 26.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.
8.2.1
CLOCK SWITCHING MODE CONFIGURATION BITS
The FCKSM Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed (`0'). The FSCM is enabled only when the FCKSM<1:0> bits are both programmed (`00').
TABLE 8-1:
CONFIGURATION BIT VALUES FOR CLOCK SELECTION
Oscillator Source Internal Internal Internal Secondary Primary Primary Primary Primary Primary Internal Internal POSCMD<1:0> 11 xx 11 11 01 00 10 01 00 11 11 FNOSC<2:0> 111 110 101 100 011 011 010 010 010 001 000 1 1 Notes 1, 2 1 1 1
Oscillator Mode Fast RC Oscillator with Postscaler (FRCDIV) (Reserved) Low-Power RC Oscillator (LPRC) Secondary (Timer1) Oscillator (SOSC) Primary Oscillator (XT) with PLL Module (XTPLL) Primary Oscillator (EC) with PLL Module (ECPLL) Primary Oscillator (HS) Primary Oscillator (XT) Primary Oscillator (EC) Fast RC Oscillator with PLL Module (FRCPLL) Fast RC Oscillator (FRC) Note 1: 2:
OSCO pin function is determined by the OSCIOFCN Configuration bit. This is the default oscillator mode for an unprogrammed (erased) device.
DS39940D-page 108
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
8.3 Control Registers
The operation of the oscillator is controlled by three Special Function Registers (SFRs): * OSCCON * CLKDIV * OSCTUN The OSCCON register (Register 8-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The CLKDIV register (Register 8-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator. The OSCTUN register (Register 8-3) allows the user to fine tune the FRC Oscillator over a range of approximately 12%.
REGISTER 8-1:
U-0 -- bit 15 R/SO-0 CLKLOCK bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12
OSCCON: OSCILLATOR CONTROL REGISTER
R-0 COSC2 R-0 COSC1 R-0 COSC0 U-0 -- R/W-x(1) NOSC2 R/W-x(1) NOSC1 R/W-x(1) NOSC0 bit 8 R/W-0 R-0(3) LOCK U-0 -- R/CO-0 CF R/W-0 POSCEN R/W-0 SOSCEN R/W-0 OSWEN bit 0 CO = Clearable Only bit W = Writable bit `1' = Bit is set SO = Settable Only bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
IOLOCK(2)
Unimplemented: Read as `0' COSC<2:0>: Current Oscillator Selection bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) Unimplemented: Read as `0' NOSC<2:0>: New Oscillator Selection bits(1) 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) Reset values for these bits are determined by the FNOSC Configuration bits. The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is `1', once the IOLOCK bit is set, it cannot be cleared. Also resets to `0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
bit 11 bit 10-8
Note 1: 2: 3:
2010 Microchip Technology Inc.
DS39940D-page 109
PIC24FJ64GB004 FAMILY
REGISTER 8-1:
bit 7
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)
CLKLOCK: Clock Selection Lock Enabled bit If FSCM is enabled (FCKSM1 = 1): 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit If FSCM is disabled (FCKSM1 = 0): Clock and PLL selections are never locked and may be modified by setting the OSWEN bit. IOLOCK: I/O Lock Enable bit(2) 1 = I/O lock is active 0 = I/O lock is not active LOCK: PLL Lock Status bit(3) 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled Unimplemented: Read as `0' CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected POSCEN: Primary Oscillator Sleep Enable bit 1 = Primary oscillator continues to operate during Sleep mode 0 = Primary oscillator disabled during Sleep mode SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator OSWEN: Oscillator Switch Enable bit 1 = Initiate an oscillator switch to the clock source specified by the NOSC<2:0> bits 0 = Oscillator switch is complete Reset values for these bits are determined by the FNOSC Configuration bits. The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is `1', once the IOLOCK bit is set, it cannot be cleared. Also resets to `0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
bit 6
bit 5
bit 4 bit 3
bit 2
bit 1
bit 0
Note 1: 2: 3:
DS39940D-page 110
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 8-2:
R/W-0 ROI bit 15 R/W-0 CPDIV1 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 CPDIV0 R/W-0 PLLEN U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
CLKDIV: CLOCK DIVIDER REGISTER
R/W-0 DOZE2 R/W-0 DOZE1 R/W-0 DOZE0 R/W-0 DOZEN(1) R/W-0 RCDIV2 R/W-0 RCDIV1 R/W-1 RCDIV0 bit 8
ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE<2:0>: CPU Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZE Enable bit(1) 1 = DOZE<2:0> bits specify the CPU peripheral clock ratio 0 = CPU peripheral clock ratio is set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) 000 = 8 MHz (divide-by-1) CPDIV<1:0>: USB System Clock Select bits (postscaler select from 32 MHz clock branch) 11 = 4 MHz (divide-by-8)(2) 10 = 8 MHz (divide-by-4)(2) 01 = 16 MHz (divide-by-2) 00 = 32 MHz (divide-by-1) PLLEN: 96 MHz PLL Enable bit 1 = Enable PLL 0 = Disable PLL Unimplemented: Read as `0' This bit is automatically cleared when the ROI bit is set and an interrupt occurs. This setting is not allowed while the USB module is enabled.
bit 14-12
bit 11
bit 10-8
bit 7-6
bit 5
bit 4-0 Note 1: 2:
2010 Microchip Technology Inc.
DS39940D-page 111
PIC24FJ64GB004 FAMILY
REGISTER 8-3:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-6 bit 5-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- R/W-0 TUN5(1) R/W-0 TUN4(1) R/W-0 TUN3(1) R/W-0 TUN2(1) R/W-0 TUN1(1)
OSCTUN: FRC OSCILLATOR TUNE REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 TUN0(1) bit 0
Unimplemented: Read as `0' TUN<5:0>: FRC Oscillator Tuning bits(1) 011111 = Maximum frequency deviation 011110 = 000001 = 000000 = Center frequency, oscillator is running at factory calibrated frequency 111111 = 100001 = 100000 = Minimum frequency deviation Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.
Note 1:
8.4
Clock Switching Operation
8.4.1
ENABLING CLOCK SWITCHING
With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process. Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.
To enable clock switching, the FCKSM Configuration bits in CW2 must be programmed to `00'. (Refer to Section 26.1 "Configuration Bits" for further details.) If the FCKSM Configuration bits are unprogrammed (`1x'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting. The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits. The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at `0' at all times.
DS39940D-page 112
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
8.4.2 OSCILLATOR SWITCHING SEQUENCE
A recommended code sequence for a clock switch includes the following: 1. 2. Disable interrupts during the OSCCON register unlock and write sequence. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence. Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions. Set the OSWEN bit in the instruction immediately following the unlock sequence. Continue to execute code that is not clock-sensitive (optional). Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize. Check to see if OSWEN is `0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure. At a minimum, performing a clock switch requires this basic sequence: 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source. Perform the unlock sequence to allow a write to the OSCCON register high byte. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source. Perform the unlock sequence to allow a write to the OSCCON register low byte. Set the OSWEN bit to initiate the oscillator switch.
2. 3. 4. 5.
3.
4.
5. 6. 7.
Once the basic sequence is completed, the system clock hardware responds automatically as follows: 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted. If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1). The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set). Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time. 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
8.
2.
3.
The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.
EXAMPLE 8-1:
BASIC CODE SEQUENCE FOR CLOCK SWITCHING
4.
5.
6.
;Place the new oscillator selection in W0 ;OSCCONH (high byte) Unlock Sequence MOV #OSCCONH, w1 MOV #0x78, w2 MOV #0x9A, w3 MOV.b w2, [w1] MOV.b w3, [w1] ;Set new oscillator selection MOV.b WREG, OSCCONH ;OSCCONL (low byte) unlock sequence MOV #OSCCONL, w1
MOV #0x46, w2 MOV #0x57, w3 MOV.b w2, [w1] MOV.b w3, [w1] ;Start oscillator switch operation BSET OSCCON,#0
2010 Microchip Technology Inc.
DS39940D-page 113
PIC24FJ64GB004 FAMILY
8.5 Oscillator Modes and USB Operation
TABLE 8-2: SYSTEM CLOCK OPTIONS DURING USB OPERATION
Microcontroller Clock Frequency 32 MHz 16 MHz 8 MHz 4 MHz MCU Clock Division (CPDIV<1:0>) None (00) 2 (01) 4 (10) 8 (11)
Because of the timing requirements imposed by USB, an internal clock of 48 MHz is required at all times while the USB module is enabled. Since this is well beyond the maximum CPU clock speed, a method is provided to internally generate both the USB and system clocks from a single oscillator source. PIC24FJ64GB004 family devices use the same clock structure as other PIC24FJ devices, but include a two-branch PLL system to generate the two clock signals. The USB PLL block is shown in Figure 8-2. In this system, the input from the primary oscillator is divided down by a PLL prescaler to generate a 4 MHz output. This is used to drive an on-chip 96 MHz PLL frequency multiplier to drive the two clock branches. One branch uses a fixed, divide-by-2 frequency divider to generate the 48 MHz USB clock. The other branch uses a fixed, divide-by-3 frequency divider and configurable PLL prescaler/divider to generate a range of system clock frequencies. The CPDIV bits select the system clock speed; available clock options are listed in Table 8-2. The USB PLL prescaler does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL divider to generate the required 4 MHz output using the PLLDIV<2:0> Configuration bits. This limits the choices for primary oscillator frequency to a total of 8 possibilities, shown in Table 8-3.
TABLE 8-3:
VALID PRIMARY OSCILLATOR CONFIGURATIONS FOR USB OPERATIONS
Clock Mode ECPLL ECPLL HSPLL, ECPLL HSPLL, ECPLL HSPLL, ECPLL HSPLL, ECPLL XTPLL, ECPLL XTPLL, ECPLL PLL Division (PLLDIV<2:0>) 12 (111) 8 (110) 6 (101) 5 (100) 4 (011) 3 (010) 2 (001) 1 (000)
Input Oscillator Frequency 48 MHz 32 MHz 24 MHz 20 MHz 16 MHz 12 MHz 8 MHz 4 MHz
FIGURE 8-2:
USB PLL BLOCK
PLLDIV<2:0> 48 MHz Clock for USB Module
FNOSC<2:0> PLL Prescaler Input from POSC Input from FRC (4 MHz or 8 MHz)
3
32 MHz
PLL Prescaler
12 8 6 5 4 3 2 1
111 110 101 100 011 010 001 000
2 4 MHz 96 MHz PLL
8 4 2 1
11 10 01 00
PLL Output for System Clock
CPDIV<1:0>
8.5.1
CONSIDERATIONS FOR USB OPERATION
When using the USB On-The-Go module in PIC24FJ64GB004 family devices, users must always observe these rules in configuring the system clock: * For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
* The Primary Oscillator/PLL modes are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module. * All oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for bus attachment).
DS39940D-page 114
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
8.6
8.6.1
Secondary Oscillator (SOSC)
BASIC SOSC OPERATION
PIC24FJ64GB004 family devices do not have to set the SOSCEN bit to use the secondary oscillator. Any module requiring the SOSC (such as RTCC, Timer1 or DSWDT) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time. To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit. To use the secondary oscillator, the SOSCSEL<1:0> bits (CW3<9:8>) must be configured in an oscillator mode - either `11' or `01'. Setting SOSCSEL to `00' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins. Digital functionality will not be available if the SOSC is configured in either of the oscillator modes.
In general, the crystal circuit connections should be as short as possible. It is also good practice to surround the crystal circuit with a ground loop or ground plane. For more information on crystal circuit design, please refer to Section 6 "Oscillator" (DS39700) of the "PIC24F Family Reference Manual". Additional information is also available in these Microchip Application Notes: * AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC(R) and PICmicro(R) Devices" (DS00826) * AN849, "Basic PICmicro(R) Oscillator Design" (DS00849).
8.7
Reference Clock Output
8.6.2
LOW-POWER SOSC OPERATION
The secondary oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. The Secondary Oscillator Mode Configuration bits, SOSCSEL<1:0> (CW3<9:8>), determine the oscillator's power mode. Programming the SOSCSEL bits to `01' selects low-power operation. The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly.
In addition to the CLKO output (FOSC/2) available in certain oscillator modes, the device clock in the PIC24FJ64GB004 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. This reference clock output is controlled by the REFOCON register (Register 8-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options. The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode. To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.
8.6.3
EXTERNAL (DIGITAL) CLOCK MODE (SCLKI)
The SOSC can also be configured to run from an external 32 kHz clock source, rather than the internal oscillator. In this mode, also referred to as Digital mode, the clock source provided on the SCLKI pin is used to clock any modules that are configured to use the secondary oscillator. In this mode, the crystal driving circuit is disabled and the SOSCEN bit (OSCCON<1>) has no effect.
8.6.4
SOSC LAYOUT CONSIDERATIONS
The pinout limitations on low pin count devices, such as those in the PIC24FJ64GB004 family, may make the SOSC more susceptible to noise than other PIC24F devices. Unless proper care is taken in the design and layout of the SOSC circuit, this external noise may introduce inaccuracies into the oscillator's period.
2010 Microchip Technology Inc.
DS39940D-page 115
PIC24FJ64GB004 FAMILY
REGISTER 8-4:
R/W-0 ROEN bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER
U-0 -- R/W-0 ROSSLP R/W-0 ROSEL R/W-0 RODIV3 R/W-0 RODIV2 R/W-0 RODIV1 R/W-0 RODIV0 bit 8
ROEN: Reference Oscillator Output Enable bit 1 = Reference oscillator is enabled on REFO pin 0 = Reference oscillator is disabled Unimplemented: Read as `0' ROSSLP: Reference Oscillator Output Stop in Sleep bit 1 = Reference oscillator continues to run in Sleep 0 = Reference oscillator is disabled in Sleep ROSEL: Reference Oscillator Source Select bit 1 = Primary oscillator is used as the base clock. Note that the crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode. 0 = System clock used as the base clock; base clock reflects any clock switching of the device RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768 1110 = Base clock value divided by 16,384 1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096 1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024 1001 = Base clock value divided by 512 1000 = Base clock value divided by 256 0111 = Base clock value divided by 128 0110 = Base clock value divided by 64 0101 = Base clock value divided by 32 0100 = Base clock value divided by 16 0011 = Base clock value divided by 8 0010 = Base clock value divided by 4 0001 = Base clock value divided by 2 0000 = Base clock value Unimplemented: Read as `0'
bit 14 bit 13
bit 12
bit 11-8
bit 7-0
DS39940D-page 116
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
9.0
Note:
POWER-SAVING FEATURES
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 39. "Power-Saving Features with Deep Sleep" (DS39727).
The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.
The PIC24FJ64GB004 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways: * Clock Frequency * Instruction-Based Sleep, Idle and Deep Sleep modes * Software Controlled Doze mode * Selective Peripheral Control in Software Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.
Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".
9.2.1
SLEEP MODE
Sleep mode has these features: * The system clock source is shut down. If an on-chip oscillator is used, it is turned off. * The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current. * The I/O pin directions and states are frozen. * The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled. * The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as clock source, is enabled. * The WDT, if enabled, is automatically cleared prior to entering Sleep mode. * Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode. The device will wake-up from Sleep mode on any of these events: * On any interrupt source that is individually enabled * On any form of device Reset * On a WDT time-out On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.
9.1
Clock Frequency and Clock Switching
PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 8.0 "Oscillator Configuration".
9.2
Instruction-Based Power-Saving Modes
PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals except RTCC and DSWDT. It also freezes I/O states and removes power to SRAM and Flash memory.
EXAMPLE 9-1:
PWRSAV PWRSAV BSET PWRSAV
PWRSAV INSTRUCTION SYNTAX
; ; ; ; Put the device into SLEEP mode Put the device into IDLE mode Enable Deep Sleep Put the device into Deep SLEEP mode
#SLEEP_MODE #IDLE_MODE DSCON, #DSEN #SLEEP_MODE
2010 Microchip Technology Inc.
DS39940D-page 117
PIC24FJ64GB004 FAMILY
9.2.2 IDLE MODE
Note: Idle mode has these features: * The CPU will stop executing instructions. * The WDT is automatically cleared. * The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control"). * If the WDT or FSCM is enabled, the LPRC will also remain active. The device will wake from Idle mode on any of these events: * Any interrupt that is individually enabled * Any device Reset * A WDT time-out On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR. Since Deep Sleep mode powers down the microcontroller by turning off the on-chip VDDCORE voltage regulator, Deep Sleep capability is available only when operating with the internal regulator enabled.
9.2.4.1
Entering Deep Sleep Mode
Deep Sleep mode is entered by setting the DSEN bit in the DSCON register, and then executing a SLEEP instruction (PWRSAV #SLEEP_MODE) within one to three instruction cycles to minimize the chance that Deep Sleep will be spuriously entered. If the PWRSAV command is not given within three instruction cycles, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting the Deep Sleep mode. Note: To re-enter Deep Sleep after a Deep Sleep wake-up, allow a delay of at least 3 TCY after clearing the RELEASE bit.
9.2.3
INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS
The sequence to enter Deep Sleep mode is: 1. If the application requires the Deep Sleep WDT, enable it and configure its clock source (see Section 9.2.4.7 "Deep Sleep WDT" for details). If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (CW4<6>). If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module (see Section 20.0 "Real-Time Clock and Calendar (RTCC)" for more information). If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional). Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>). Enter Deep Sleep mode by immediately issuing a PWRSAV #0 instruction.
Any interrupt that coincides with the execution of a PWRSAV instruction (except for Deep Sleep mode) will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.
2.
9.2.4
DEEP SLEEP MODE
3.
In PIC24FJ64GB004 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available, without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events: * * * * * POR event MCLR event RTCC alarm (If the RTCC is present) External Interrupt 0 Deep Sleep Watchdog Timer (DSWDT) time-out
4.
5. 6.
Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.
In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles. The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).
DS39940D-page 118
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
9.2.4.2 Special Cases when Entering Deep Sleep Mode
When entering Deep Sleep mode, there are certain circumstances that require a delay between setting the DSEN bit and executing the PWRSAV instruction. These can be generally reduced to three scenarios: 1. 2. 3. Scenario (1): use an external wake-up source (INT0) or the RTCC Scenario (2): with application-level interrupts that can be temporarily disabled Scenario (3): with interrupts that must be monitored Examples for implementing these cases are shown in Example 9-2. It is recommended that an assembler, or in-line C routine, be used in these cases to ensure that the code executes in the number of cycles required.
EXAMPLE 9-2:
IMPLEMENTING THE SPECIAL CASES FOR ENTERING DEEP SLEEP
In the first scenario, the application requires a wake-up from Deep Sleep on the assertion of the INT0 pin or the RTCC interrupt. In this case, three NOP instructions must be inserted to properly synchronize the detection of an asynchronous INT0 interrupt after the device enters Deep Sleep mode. If the application does not use wake-up on INT0 or RTCC, the NOP instructions are optional. In the second scenario, the application also uses interrupts which can be briefly ignored. With these applications, an interrupt event during the execution of the NOP instructions may cause an ISR to be executed. This means that more than three instruction cycles will elapse before returning to the code and that the DSEN bit will be cleared. To prevent the missed entry into Deep Sleep, temporarily disable interrupts prior to entering Deep Sleep mode. Invoking the DISI instruction for four cycles is sufficient to prevent interrupts from disrupting Deep Sleep entry. In the third scenario, interrupts cannot be ignored even briefly; constant interrupt detection is required, even during the interval between setting DSEN and executing the PWRSAV instruction. For these cases, it is possible to disable interrupts and test for an interrupt condition, skipping the PWRSAV instruction if necessary. Testing for interrupts can be accomplished by checking the status of the CPUIRQ bit (INTTREG<15>); if an unserviced interrupt is pending, this bit will be set. If CPUIRQ is set prior to executing the PWRSAV instruction, the instruction is skipped. At this point, the DISI instruction has expired (being more than 4 instructions from when it was executed) and the application vectors to the appropriate ISR. When the application returns, it can either attempt to re-enter Deep Sleep mode or perform some other system function. In either case, the application must have some functional code located, following the PWRSAV instruction, in the event that the PWRSAV instruction is skipped and the device does not enter Deep Sleep mode.
// Case 1: simplest delay scenario // asm("bset DSCON, #15"); asm("nop"); asm("nop"); asm("nop"); asm("pwrsav #0"); // // Case 2: interrupts disabled // asm("disi #4"); asm("bset DSCON, #15"); asm("nop"); asm("nop"); asm("nop"); asm("pwrsav #0"); // // Case 3: interrupts disabled with // interrupt testing // asm("disi #4"); asm("bset DSCON, #15"); asm("nop"); asm("nop"); asm("btss INTTREG, #15"); asm("pwrsav #0"); // continue with application code here //
2010 Microchip Technology Inc.
DS39940D-page 119
PIC24FJ64GB004 FAMILY
9.2.4.3 Exiting Deep Sleep Mode 9.2.4.4 Deep Sleep Wake-up Time
Deep Sleep mode exits on any one of the following events: * POR event on VDD supply. If there is no DSBOR circuit to re-arm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit. * DSWDT time-out. When the DSWDT timer times out, the device exits Deep Sleep. * RTCC alarm (if RTCEN = 1). * Assertion (`0') of the MCLR pin. * Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level (`0' or `1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode. Note: Any interrupt pending when entering Deep Sleep mode is cleared. Since wake-up from Deep Sleep results in a POR, the wake-up time from Deep Sleep is the same as the device POR time. Also, because the internal regulator is turned off, the voltage on VCAP may drop depending on how long the device is asleep. If VCAP has dropped below 2V, then there will be additional wake-up time while the regulator charges VCAP. Deep Sleep wake-up time is specified in Section 29.0 "Electrical Characteristics" as TDSWU. This specification indicates the worst case wake-up time, including the full POR Reset time (including TPOR and TRST), as well as the time to fully charge a 10 F capacitor on VCAP which has discharged to 0V. Wake-up may be significantly faster if VCAP has not discharged.
9.2.4.5
Saving Context Data with the DSGPR0/DSGPR1 Registers
Exiting Deep Sleep mode generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and DSWDT. Wake-up events that occur from the time Deep Sleep exits, until the time that the POR sequence completes, are ignored and are not captured in the DSWAKE register. The sequence for exiting Deep Sleep mode is: 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector. To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it. Determine the wake-up source by reading the DSWAKE register. Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>). If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers. Clear the RELEASE bit (DSCON<0>).
As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VDDCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode. Applications which require critical data to be saved prior to Deep Sleep may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).
9.2.4.6
I/O Pins During Deep Sleep Mode
2.
3. 4.
During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRIS bit set) prior to entry into Deep Sleep remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRIS bit clear) prior to entry into Deep Sleep remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LAT bit at the time of entry into Deep Sleep.
5.
6.
DS39940D-page 120
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRIS and LAT registers, and the SOSCEN bit (OSCCON<1>) are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>) the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRIS and LAT bit values. This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE. If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents. If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared. In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.
9.2.4.8
Switching Clocks in Deep Sleep Mode
Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption. Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If an accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (CW4<5>). Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.
9.2.4.9
Checking and Clearing the Status of Deep Sleep Mode
Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by software. On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered: * Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit. * The DPSLP bit is clear, but the POR bit is set. This is a normal Power-on Reset. * Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.
9.2.4.7
Deep Sleep WDT
To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (CW4<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT. The DSWDT clock source is selected by the DSWDTOSC Configuration bit (CW4<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (CW4<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the CW4 Configuration register and DSWDT configuration options, refer to Section 26.0 "Special Features".
2010 Microchip Technology Inc.
DS39940D-page 121
PIC24FJ64GB004 FAMILY
9.2.4.10 Power-on Resets (PORs) 9.2.4.11 Summary of Deep Sleep Sequence
VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in Section 9.2.4.9 "Checking and Clearing the Status of Deep Sleep Mode" should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset. To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Device exits Reset and begins to execute its application code. If DSWDT functionality is required, program the appropriate Configuration bit. Select the appropriate clock(s) for the DSWDT and RTCC (optional). Enable and configure the RTCC (optional). Write context data to the DSGPRx registers (optional). Enable the INT0 interrupt (optional). Set the DSEN bit in the DSCON register. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command. Device exits Deep Sleep when a wake-up event occurs. The DSEN bit is automatically cleared. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits. Read the DSGPRx registers (optional). Once all state related configurations are complete, clear the RELEASE bit. Application resumes normal operation.
DS39940D-page 122
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 9-1:
R/W-0, HC DSEN(1) bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR HC = Hardware Clearable bit bit 15 W = Writable bit `1' = Bit is set HS = Hardware Settable bit C = Clearable bit `0' = Bit is cleared U = Unimplemented, read as `0' x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0, HCS DSBOR
(1,2,3)
DSCON: DEEP SLEEP CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/C-0, HS RELEASE(1,2) bit 0
HCS = Hardware Clearable/Settable bit
DSEN: Deep Sleep Enable bit(1) 1 = Device entered Deep Sleep when PWRSAV #0 was executed in the next instruction 0 = Device entered normal Sleep when PWRSAV #0 was executed Unimplemented: Read as `0' DSBOR: Deep Sleep BOR Event Status bit(1,2,3) 1 = The DSBOR is active and a BOR event is detected during Deep Sleep 0 = The DSBOR is disabled or is active and does not detect a BOR event during Deep Sleep RELEASE: I/O Pin State Deep Sleep Release bit(1,2) 1 = I/O pins and SOSC maintain their states following exit from Deep Sleep, regardless of their LAT and TRIS configuration 0 = I/O pins and SOSC are released from their Deep Sleep states. The pin state is controlled by the LAT and TRIS configurations, and the SOSCEN bit. These bits are reset only in the case of a POR event outside of Deep Sleep mode. Reset value is `0' for initial power-on POR only and `1' for Deep Sleep POR. This is a status bit only; a DSBOR event will NOT cause a wake-up from Deep Sleep.
bit 14-2 bit 1
bit 0
Note 1: 2: 3:
2010 Microchip Technology Inc.
DS39940D-page 123
PIC24FJ64GB004 FAMILY
REGISTER 9-2:
U-0 -- bit 15 R/W-0, HS DSFLT bit 7 Legend: R = Readable bit -n = Value at POR bit 15-9 bit 8 HS = Hardware Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
(1)
DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0, HS DSINT0(1) bit 8 U-0 -- U-0 -- R/W-0, HS DSWDT
(1)
R/W-0, HS DSRTC
(1)
R/W-0, HS DSMCLR
(1)
U-0 --
R/W-0, HS DSPOR(2) bit 0
Unimplemented: Read as `0' DSINT0: Interrupt-on-Change bit(1) 1 = External Interrupt 0 was asserted during Deep Sleep 0 = External Interrupt 0 was not asserted during Deep Sleep DSFLT: Deep Sleep Fault Detected bit(1) 1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been corrupted 0 = No Fault was detected during Deep Sleep Unimplemented: Read as `0' DSWDT: Deep Sleep Watchdog Timer Time-out bit(1) 1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep 0 = The Deep Sleep Watchdog Timer did not time out during Deep Sleep DSRTC: Real-Time Clock and Calendar Alarm bit(1) 1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep 0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep DSMCLR: Deep Sleep MCLR Event bit(1) 1 = The MCLR pin was asserted during Deep Sleep 0 = The MCLR pin was not asserted during Deep Sleep Unimplemented: Read as `0' DSPOR: Power-on Reset Event bit(2) 1 = The VDD supply POR circuit was active and a POR event was detected 0 = The VDD supply POR circuit was not active, or was active, but did not detect a POR event This bit can only be set while the device is in Deep Sleep mode. This bit can be set outside of Deep Sleep.
bit 7
bit 6-5 bit 4
bit 3
bit 2
bit 1 bit 0
Note 1: 2:
DS39940D-page 124
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
9.3 Doze Mode 9.4
Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely. Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default. It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.
Selective Peripheral Module Control
Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals. PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits: * The Peripheral Enable bit, generically named "XXXEN", located in the module's main control SFR. * The Peripheral Module Disable (PMD) bit, generically named "XXXMD", located in one of the PMD Control registers. Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit. In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC. To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.
2010 Microchip Technology Inc.
DS39940D-page 125
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 126
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
10.0
Note:
I/O PORTS
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711).
When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port. All port pins have three registers directly associated with their operation as digital I/Os. The Data Direction register (TRIS) determines whether the pin is an input or an output. If the data direction bit is a `1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LAT), read the latch. Writes to the Output Latch register, write the latch. Reads from the port (PORT), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LAT and TRIS registers, and the port pin will read as zeros. When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of outputs.
All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.
10.1
Parallel I/O (PIO) Ports
A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.
FIGURE 10-1:
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE
Peripheral Module
Peripheral Input Data Peripheral Module Enable Peripheral Output Enable Peripheral Output Data 1 0 1 0 Output Enable
Output Multiplexers
I/O
PIO Module
Read TRIS
Output Data
Data Bus WR TRIS
D CK
Q
I/O Pin
TRIS Latch D WR LAT + WR PORT CK Data Latch Q
Read LAT Input Data Read PORT
2010 Microchip Technology Inc.
DS39940D-page 127
PIC24FJ64GB004 FAMILY
10.1.1 OPEN-DRAIN CONFIGURATION 10.2.2
In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.
ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS
The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should be avoided. Table 10-1 summarizes the input voltage capabilities. Refer to Section 29.0 "Electrical Characteristics" for more details.
10.2
Configuring Analog Port Pins
TABLE 10-1:
Port or Pin PORTA<4:0> PORTB<15:13> PORTB<4:0> PORTC<3:0>(1) PORTA<10:7>(1) PORTB<11:7> PORTB<5> PORTC<9:4>(1) Note 1:
INPUT VOLTAGE TOLERANCE
Tolerate d Input VDD Description Only VDD input levels are tolerated.
The AD1PCFGL and TRIS registers control the operation of the A/D port pins. Setting a port pin as an analog input also requires that the corresponding TRIS bit be set. If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.
5.5V
Tolerates input levels above VDD, useful for most standard logic.
10.2.1
I/O PORT WRITE/READ TIMING
Not available on 28-pin devices.
One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP (Example 10-1).
EXAMPLE 10-1:
MOV MOV NOP BTSS 0xFF00, W0 W0, TRISB PORTB, #13
PORT WRITE/READ EXAMPLE
; ; ; ; Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs Delay 1 cycle Next Instruction
DS39940D-page 128
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
10.3 Input Change Notification
The input change notification function of the I/O ports allows the PIC24FJ64GB004 family of devices to generate interrupt requests to the processor in response to a change of state on selected input pins. This feature is capable of detecting input Change-of-States (COS) even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 29 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State. Registers, CNEN1 and CNEN2, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin has a weak pull-up connected to it. The pull-up acts as a current source that is connected to the pin. This eliminates the need for external resistors when push button or keypad devices are connected. The pull-ups are separately enabled using the CNPU1 and CNPU2 registers (for pull-ups). Each CN pin has individual control bits for its pull-up. Setting a control bit enables the weak pull-up for the corresponding pin. When the internal pull-up is selected, the pin pulls up to VDD-0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path. Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output. safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.
10.4.1
AVAILABLE PINS
The Peripheral Pin Select feature is used with a range of up to 25 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "n" is the remappable pin number. See Table 1-2 for a summary of pinout options in each package offering.
10.4.2
AVAILABLE PERIPHERALS
The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. Peripheral Pin Select is not available for I2CTM change notification inputs, RTCC alarm outputs or peripherals with analog inputs. A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.
10.4
Peripheral Pin Select (PPS)
A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code or a complete redesign may be the only option. The Peripheral Pin Select feature provides an alternative to these choices by enabling the user's peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device. The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware
10.4.2.1
Peripheral Pin Select Function Priority
Pin-selectable peripheral outputs (for example, OC and UART transmit) take priority over any general purpose digital functions permanently tied to that pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, take priority over PPS outputs on the same pin. The pin diagrams at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin. Unlike devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the pin's TRIS bit setting, or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly, reading the input. If an analog function is enabled on the same pin, the pin-selectable input will be disabled.
2010 Microchip Technology Inc.
DS39940D-page 129
PIC24FJ64GB004 FAMILY
10.4.3 CONTROLLING PERIPHERAL PIN SELECT 10.4.3.1 Input Mapping
Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint. The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped. The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains up to two sets of 5-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Select options supported by the device.
TABLE 10-2:
SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)
Function Name INT1 INT2 IC1 IC2 IC3 IC4 IC5 OCFA OCFB SCK1IN SDI1 SS1IN SCK2IN SDI2 SS2IN T2CK T3CK T4CK T5CK U1CTS U1RX U2CTS U2RX Register RPINR0 RPINR1 RPINR7 RPINR7 RPINR8 RPINR8 RPINR9 RPINR11 RPINR11 RPINR20 RPINR20 RPINR21 RPINR22 RPINR22 RPINR23 RPINR3 RPINR3 RPINR4 RPINR4 RPINR18 RPINR18 RPINR19 RPINR19 Function Mapping Bits INT1R<5:0> INT2R<5:0> IC1R<5:0> IC2R<5:0> IC3R<5:0> IC4R<5:0> IC5R<5:0> OCFAR<5:0> OCFBR<5:0> SCK1R<5:0> SDI1R<5:0> SS1R<5:0> SCK2R<5:0> SDI2R<5:0> SS2R<5:0> T2CKR<5:0> T3CKR<5:0> T4CKR<5:0> T5CKR<5:0> U1CTSR<5:0> U1RXR<5:0> U2CTSR<5:0> U2RXR<5:0>
Input Name External Interrupt 1 External Interrupt 2 Input Capture 1 Input Capture 2 Input Capture 3 Input Capture 4 Input Capture 5 Output Compare Fault A Output Compare Fault B SPI1 Clock Input SPI1 Data Input SPI1 Slave Select Input SPI2 Clock Input SPI2 Data Input SPI2 Slave Select Input Timer2 External Clock Timer3 External Clock Timer4 External Clock Timer5 External Clock UART1 Clear To Send UART1 Receive UART2 Clear To Send UART2 Receive Note 1:
Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.
DS39940D-page 130
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
10.4.3.2 Output Mapping
In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains up to two 5-bit fields, with each field being associated with one RPn pin (see Register 10-15 through Register 10-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-3). Because of the mapping technique, the list of peripherals for output mapping also includes a null value of `000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.
TABLE 10-3:
SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)
Function NULL(2) C1OUT C2OUT U1TX U1RTS
(3)
Output Function Number(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 18 19 20 21 22 23-28 29 30 31 Note 1: 2: 3:
Output Name Null Comparator 1 Output Comparator 2 Output UART1 Transmit UART1 Request To Send UART2 Transmit UART2 Request To Send SPI1 Data Output SPI1 Clock Output SPI1 Slave Select Output SPI2 Data Output SPI2 Clock Output SPI2 Slave Select Output Output Compare 1 Output Compare 2 Output Compare 3 Output Compare 4 Output Compare 5 NC CTMU Output Pulse Comparator 3 Output NC
U2TX U2RTS(3) SDO1 SCK1OUT SS1OUT SDO2 SCK2OUT SS2OUT OC1 OC2 OC3 OC4 OC5 (unused) CTPLS C3OUT (unused)
Setting the RPORx register with the listed value assigns that output function to the associated RPn pin. The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function. IrDA(R) BCLK functionality uses this output.
2010 Microchip Technology Inc.
DS39940D-page 131
PIC24FJ64GB004 FAMILY
10.4.3.3 Mapping Limitations 10.4.4.1 Control Register Lock
The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input, or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins. Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes. To set or clear IOLOCK, a specific command sequence must be executed: 1. 2. 3. Write 46h to OSCCON<7:0>. Write 57h to OSCCON<7:0>. Clear (or set) IOLOCK as a single operation.
10.4.3.4
PPS Mapping Exceptions for PIC24FJ64GB0 Family Devices
Although the PPS registers allow for up to 32 remappable pins, not all of these are implemented in all devices. Exceptions and unimplemented RPn pins are listed in Table 10-4.
TABLE 10-4:
REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ64GB004 FAMILY DEVICES
RP Pins (I/O) Total 15 25 Unimplemented RP12, RP16-RP25 RP12
Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.
10.4.4.2
Continuous State Monitoring
Device Pin Count 28 Pins 44 Pins
10.4.4
CONTROLLING CONFIGURATION CHANGES
In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.
10.4.4.3
Configuration Bit Pin Select Lock
Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map: * Control register lock sequence * Continuous state monitoring * Configuration bit remapping lock
As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset. In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.
DS39940D-page 132
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION
The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals. The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to `11111' and all RPORx registers reset to `00000', all Peripheral Pin Select inputs are tied to VSS and all Peripheral Pin Select outputs are disconnected. Note: RP31 does not have to exist on a device for the registers to be reset to it, or for peripheral pin outputs to be tied to it. The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application. A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select. Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used: * Input Functions: U1RX, U1CTS * Output Functions: U1TX, U1RTS
This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers. Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly. Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.
2010 Microchip Technology Inc.
DS39940D-page 133
PIC24FJ64GB004 FAMILY
EXAMPLE 10-2:
;unlock push push push mov mov mov mov.b mov.b bclr
CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN ASSEMBLY CODE
registers w1; w2; w3; #OSCCON, w1; #0x46, w2; #0x57, w3; w2, [w1]; w3, [w1]; OSCCON, #6;
; Configure Input Functions (Table10-2) ; Assign U1CTS To Pin RP1, U1RX To Pin RP0 mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign U1RTS To Pin RP3, U1TX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock mov mov mov mov.b mov.b bset pop pop pop registers #OSCCON, w1; #0x46, w2; #0x57, w3; w2, [w1]; w3, [w1]; OSCCON, #6; w3; w2; w1;
EXAMPLE 10-3:
CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN `C'
//unlock registers __builtin_write_OSCCONL(OSCCON & 0xBF); // Configure Input Functions (Table 9-1) // Assign U1RX To Pin RP0 RPINR18bits.U1RXR = 0; // Assign U1CTS To Pin RP1 RPINR18bits.U1CTSR = 1; // Configure Output Functions (Table 9-2) // Assign U1TX To Pin RP2 RPOR1bits.RP2R = 3; // Assign U1RTS To Pin RP3 RPOR1bits.RP3R = 4; //lock registers __builtin_write_OSCCONL(OSCCON | 0x40);
DS39940D-page 134
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
10.4.6 PERIPHERAL PIN SELECT REGISTERS
Note: The PIC24FJ64GB004 family of devices implements a total of 27 registers for remappable peripheral configuration: * Input Remappable Peripheral Registers (14) * Output Remappable Peripheral Registers (13) Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.4.1 "Control Register Lock" for a specific command sequence.
REGISTER 10-1:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-0
RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0
U-0 -- U-0 -- R/W-1 INT1R4 R/W-1 INT1R3 R/W-1 INT1R2 R/W-1 INT1R1 R/W-1 INT1R0 bit 8 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' INT1R<4:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0'
REGISTER 10-2:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-5 bit 4-0
RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 U-0 -- U-0 -- R/W-1 INT2R4 R/W-1 INT2R3 R/W-1 INT2R2 R/W-1 INT2R1 R/W-1 INT2R0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' INT1R<4:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc.
DS39940D-page 135
PIC24FJ64GB004 FAMILY
REGISTER 10-3:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 T2CKR4 R/W-1 T2CKR3 R/W-1 T2CKR2 R/W-1 T2CKR1
RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3
U-0 -- U-0 -- R/W-1 T3CKR4 R/W-1 T3CKR3 R/W-1 T3CKR2 R/W-1 T3CKR1 R/W-1 T3CKR0 bit 8 R/W-1 T2CKR0 bit 0
Unimplemented: Read as `0' T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits
REGISTER 10-4:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0
RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4
U-0 -- U-0 -- R/W-1 T5CKR4 R/W-1 T5CKR3 R/W-1 T5CKR2 R/W-1 T5CKR1 R/W-1 T5CKR0 bit 8 U-0 -- U-0 -- R/W-1 T4CKR4 R/W-1 T4CKR3 R/W-1 T4CKR2 R/W-1 T4CKR1 R/W-1 T4CKR0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits
DS39940D-page 136
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-5:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 IC1R4 R/W-1 IC1R3 R/W-1 IC1R2 R/W-1 IC1R1
RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7
U-0 -- U-0 -- R/W-1 IC2R4 R/W-1 IC2R3 R/W-1 IC2R2 R/W-1 IC2R1 R/W-1 IC2R0 bit 8 R/W-1 IC1R0 bit 0
Unimplemented: Read as `0' IC2R<4:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' IC1R<4:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits
REGISTER 10-6:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0
RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8
U-0 -- U-0 -- R/W-1 IC4R4 R/W-1 IC4R3 R/W-1 IC4R2 R/W-1 IC4R1 R/W-1 IC4R0 bit 8 U-0 -- U-0 -- R/W-1 IC3R4 R/W-1 IC3R3 R/W-1 IC3R2 R/W-1 IC3R1 R/W-1 IC3R0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' IC4R<4:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' IC3R<4:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc.
DS39940D-page 137
PIC24FJ64GB004 FAMILY
REGISTER 10-7:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 IC5R4 R/W-1 IC5R3 R/W-1 IC5R2 R/W-1 IC5R1
RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-1 IC5R0 bit 0
Unimplemented: Read as `0' IC5R<4:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits
REGISTER 10-8:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0
RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
U-0 -- U-0 -- R/W-1 OCFBR4 R/W-1 OCFBR3 R/W-1 OCFBR2 R/W-1 OCFBR1 R/W-1 OCFBR0 bit 8 U-0 -- U-0 -- R/W-1 OCFAR4 R/W-1 OCFAR3 R/W-1 OCFAR2 R/W-1 OCFAR1 R/W-1 OCFAR0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' OCFBR<4:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' OCFAR<4:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits
DS39940D-page 138
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-9:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 U1RXR4 R/W-1 U1RXR3 R/W-1 U1RXR2 R/W-1 U1RXR1
RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
U-0 -- U-0 -- R/W-1 U1CTSR4 R/W-1 U1CTSR3 R/W-1 U1CTSR2 R/W-1 U1CTSR1 R/W-1 U1CTSR0 bit 8 R/W-1 U1RXR0 bit 0
Unimplemented: Read as `0' U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' U1RXR<4:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits
REGISTER 10-10: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 U2RXR4 R/W-1 U2RXR3 R/W-1 U2RXR2 R/W-1 U2RXR1 U-0 -- U-0 -- R/W-1 U2CTSR4 R/W-1 U2CTSR3 R/W-1 U2CTSR2 R/W-1 U2CTSR1 R/W-1 U2CTSR0 bit 8 R/W-1 U2RXR0 bit 0
Unimplemented: Read as `0' U2CTSR<4:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' U2RXR<4:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc.
DS39940D-page 139
PIC24FJ64GB004 FAMILY
REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 SDI1R4 R/W-1 SDI1R3 R/W-1 SDI1R2 R/W-1 SDI1R1 U-0 -- U-0 -- R/W-1 SCK1R4 R/W-1 SCK1R3 R/W-1 SCK1R2 R/W-1 SCK1R1 R/W-1 SCK1R0 bit 8 R/W-1 SDI1R0 bit 0
Unimplemented: Read as `0' SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits
REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 SS1R4 R/W-1 SS1R3 R/W-1 SS1R2 R/W-1 SS1R1 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-1 SS1R0 bit 0
Unimplemented: Read as `0' SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits
DS39940D-page 140
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 SDI2R4 R/W-1 SDI2R3 R/W-1 SDI2R2 R/W-1 SDI2R1 U-0 -- U-0 -- R/W-1 SCK2R4 R/W-1 SCK2R3 R/W-1 SCK2R2 R/W-1 SCK2R1 R/W-1 SCK2R0 bit 8 R/W-1 SDI2R0 bit 0
Unimplemented: Read as `0' SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits Unimplemented: Read as `0' SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits
REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-1 SS2R4 R/W-1 SS2R3 R/W-1 SS2R2 R/W-1 SS2R1 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-1 SS2R0 bit 0
Unimplemented: Read as `0' SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc.
DS39940D-page 141
PIC24FJ64GB004 FAMILY
REGISTER 10-15: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP2R4 R/W-0 RP2R3 R/W-0 RP2R2 R/W-0 RP2R1 U-0 -- U-0 -- R/W-0 RP3R4 R/W-0 RP3R3 R/W-0 RP3R2 R/W-0 RP3R1 R/W-0 RP3R0 bit 8 R/W-0 RP2R0 bit 0
Unimplemented: Read as `0' RP3R<4:0>: RP3 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP3 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP2R<4:0>: RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-3 for peripheral function numbers).
REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP0R4 R/W-0 RP0R3 R/W-0 RP0R2 R/W-0 RP0R1 U-0 -- U-0 -- R/W-0 RP1R4 R/W-0 RP1R3 R/W-0 RP1R2 R/W-0 RP1R1 R/W-0 RP1R0 bit 8 R/W-0 RP0R0 bit 0
Unimplemented: Read as `0' RP1R<4:0<: RP1 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP1 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP0R<4:0>: RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers).
DS39940D-page 142
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP4R4 R/W-0 RP4R3 R/W-0 RP4R2 R/W-0 RP4R1 U-0 -- U-0 -- R/W-0 RP5R4 R/W-0 RP5R3 R/W-0 RP5R2 R/W-0 RP5R1 R/W-0 RP5R0 bit 8 R/W-0 RP4R0 bit 0
Unimplemented: Read as `0' RP5R<4:0>: RP5 Output Pin Mapping bits(1) Peripheral output number n is assigned to pin, RP5 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP4R<4:0>: RP4 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP4 (see Table 10-3 for peripheral function numbers).
REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP6R4 R/W-0 RP6R3 R/W-0 RP6R2 R/W-0 RP6R1 U-0 -- U-0 -- R/W-0 RP7R4 R/W-0 RP7R3 R/W-0 RP7R2 R/W-0 RP7R1 R/W-0 RP7R0 bit 8 R/W-0 RP6R0 bit 0
Unimplemented: Read as `0' RP7R<4:0>: RP7 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP6R<4:0>: RP6 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers).
2010 Microchip Technology Inc.
DS39940D-page 143
PIC24FJ64GB004 FAMILY
REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP8R4 R/W-0 RP8R3 R/W-0 RP8R2 R/W-0 RP8R1 U-0 -- U-0 -- R/W-0 RP9R4 R/W-0 RP9R3 R/W-0 RP9R2 R/W-0 RP9R1 R/W-0 RP9R0 bit 8 R/W-0 RP8R0 bit 0
Unimplemented: Read as `0' RP9R<4:0>: RP9 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP9 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP8R<4:0>: RP8 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP8 (see Table 10-3 for peripheral function numbers).
REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP10R4 R/W-0 RP10R3 R/W-0 RP10R2 R/W-0 RP10R1 U-0 -- U-0 -- R/W-0 RP11R4 R/W-0 RP11R3 R/W-0 RP11R2 R/W-0 RP11R1 R/W-0 RP11R0 bit 8 R/W-0 RP10R0 bit 0
Unimplemented: Read as `0' RP11R<4:0>: RP11 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP11 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP10R<4:0>: RP10 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP10 (see Table 10-3 for peripheral function numbers).
DS39940D-page 144
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0 U-0 -- U-0 -- R/W-0 RP13R4 R/W-0 RP13R3 R/W-0 RP13R2 R/W-0 RP13R1 R/W-0 RP13R0 bit 8
Unimplemented: Read as `0' RP13R<4:0>: RP13 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP13 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0'
REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP14R4 R/W-0 RP14R3 R/W-0 RP14R2 R/W-0 RP14R1 U-0 -- U-0 -- R/W-0 RP15R4 R/W-0 RP15R3 R/W-0 RP15R2 R/W-0 RP15R1 R/W-0 RP15R0 bit 8 R/W-0 RP14R0 bit 0
Unimplemented: Read as `0' RP15R<4:0>: RP15 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP14R<4:0>: RP14 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP14 (see Table 10-3 for peripheral function numbers).
2010 Microchip Technology Inc.
DS39940D-page 145
PIC24FJ64GB004 FAMILY
REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8(1)
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP16R4 R/W-0 RP16R3 R/W-0 RP16R2 R/W-0 RP16R1 U-0 -- U-0 -- R/W-0 RP17R4 R/W-0 RP17R3 R/W-0 RP17R2 R/W-0 RP17R1 R/W-0 RP17R0 bit 8 R/W-0 RP16R0 bit 0
Unimplemented: Read as `0' RP17R<4:0>: RP17 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP17 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP16R<4:0>: RP16 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP16 (see Table 10-3 for peripheral function numbers). This register is unimplemented in 28-pin devices; all bits read as `0'.
Note 1:
REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9(1)
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP18R4 R/W-0 RP18R3 R/W-0 RP18R2 R/W-0 RP18R1 U-0 -- U-0 -- R/W-0 RP19R4 R/W-0 RP19R3 R/W-0 RP19R2 R/W-0 RP19R1 R/W-0 RP19R0 bit 8 R/W-0 RP18R0 bit 0
Unimplemented: Read as `0' RP19R<4:0>: RP19 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP19 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP18R<4:0>: RP18 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP18 (see Table 10-3 for peripheral function numbers). This register is unimplemented in 28-pin devices; all bits read as `0'.
Note 1:
DS39940D-page 146
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10(1)
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP20R4 R/W-0 RP20R3 R/W-0 RP20R2 R/W-0 RP20R1 U-0 -- U-0 -- R/W-0 RP21R4 R/W-0 RP21R3 R/W-0 RP21R2 R/W-0 RP21R1 R/W-0 RP21R0 bit 8 R/W-0 RP20R0 bit 0
Unimplemented: Read as `0' RP21R<4:0>: RP21 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP20R<4:0>: RP20 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers). This register is unimplemented in 28-pin devices; all bits read as `0'.
Note 1:
REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11(1)
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP22R4 R/W-0 RP22R3 R/W-0 RP22R2 R/W-0 RP22R1 U-0 -- U-0 -- R/W-0 RP23R4 R/W-0 RP23R3 R/W-0 RP23R2 R/W-0 RP23R1 R/W-0 RP23R0 bit 8 R/W-0 RP22R0 bit 0
Unimplemented: Read as `0' RP23R<4:0>: RP23 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP22R<4:0>: RP22 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers). This register is unimplemented in 28-pin devices; all bits read as `0'.
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 147
PIC24FJ64GB004 FAMILY
REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12(1)
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 RP24R4 R/W-0 RP24R3 R/W-0 RP24R2 R/W-0 RP24R1 U-0 -- U-0 -- R/W-0 RP25R4 R/W-0 RP25R3 R/W-0 RP25R2 R/W-0 RP25R1 R/W-0 RP25R0 bit 8 R/W-0 RP24R0 bit 0
Unimplemented: Read as `0' RP25R<5:0>: RP25 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers). Unimplemented: Read as `0' RP24R<5:0>: RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers). This register is unimplemented in 28-pin devices; all bits read as `0'.
Note 1:
DS39940D-page 148
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
11.0
Note:
TIMER1
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).
Figure 11-1 presents a block diagram of the 16-bit timer module. To configure Timer1 for operation: 1. 2. 3. 4. 5. 6. Set the TON bit (= 1). Select the timer prescaler ratio using the TCKPS<1:0> bits. Set the Clock and Gating modes using the TCS and TGATE bits. Set or clear the TSYNC bit to configure synchronous or asynchronous operation. Load the timer period value into the PR1 register. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.
The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes: * 16-Bit Timer * 16-Bit Synchronous Counter * 16-Bit Asynchronous Counter Timer1 also supports these features: * Timer Gate Operation * Selectable Prescaler Settings * Timer Operation during CPU Idle and Sleep modes * Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal
FIGURE 11-1:
16-BIT TIMER1 MODULE BLOCK DIAGRAM
TCKPS<1:0>
SOSCO/ T1CK SOSCEN SOSCI Gate Sync TCY TGATE
TON 1x
2 Prescaler 1, 8, 64, 256
01 00 TGATE TCS
Set T1IF
1 0 Reset
Q Q
D CK 0
TMR1 1 Comparator TSYNC Sync
Equal
PR1
2010 Microchip Technology Inc.
DS39940D-page 149
PIC24FJ64GB004 FAMILY
REGISTER 11-1:
R/W-0 TON bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 TGATE R/W-0 TCKPS1 R/W-0 TCKPS0 U-0 -- R/W-0 TSYNC R/W-0 TCS U-0 -- bit 0
T1CON: TIMER1 CONTROL REGISTER(1)
U-0 -- R/W-0 TSIDL U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 Unimplemented: Read as `0' TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 Unimplemented: Read as `0' TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Do not synchronize external clock input When TCS = 0: This bit is ignored. TCS: Timer1 Clock Source Select bit 1 = External clock from T1CK pin (on the rising edge) 0 = Internal clock (FOSC/2) Unimplemented: Read as `0' Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
bit 14 bit 13
bit 12-7 bit 6
bit 5-4
bit 3 bit 2
bit 1
bit 0 Note 1:
DS39940D-page 150
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
12.0
Note:
TIMER2/3 AND TIMER4/5
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).
To configure Timer2/3 or Timer4/5 for 32-bit operation: 1. 2. 3. Set the T32 bit (T2CON<3> or T4CON<3> = 1). Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits. Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt. Set the TON bit (= 1).
The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes. As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes: * Two Independent 16-Bit Timers with all 16-Bit Operating modes (except Asynchronous Counter mode) * Single 32-Bit Timer * Single 32-Bit Synchronous Counter They also support these features: * * * * * Timer Gate Operation Selectable Prescaler Settings Timer Operation during Idle and Sleep modes Interrupt on a 32-Bit Period Register Match ADC Event Trigger (Timer4/5 only)
4.
5.
6.
The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word. To configure any of the timers for individual 16-bit operation: 1. Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5). Select the timer prescaler ratio using the TCKPS<1:0> bits. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. Load the timer period value into the PRx register. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority. Set the TON bit (TxCON<15> = 1).
Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger; this is implemented only with Timer5. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in Register 12-2. For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers. Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags.
2. 3.
4. 5.
6.
2010 Microchip Technology Inc.
DS39940D-page 151
PIC24FJ64GB004 FAMILY
FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
T2CK (T4CK) Gate Sync TCY TGATE
TON 1x
01
00 TGATE(2) TCS(2)
1 Set T3IF (T5IF) 0 PR3 (PR5) ADC Event Trigger(3) Equal MSB Reset 16 Read TMR2 (TMR4)
(1)
Q Q
D CK PR2 (PR4)
Comparator LSB TMR3 (TMR5) TMR2 (TMR4) Sync
Write TMR2 (TMR4)(1)
16 TMR3HLD (TMR5HLD) 16
Data Bus<15:0>
Note 1: 2: 3:
The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the T2CON and T4CON registers. The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information. The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.
DS39940D-page 152
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
FIGURE 12-2: TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM
TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
T2CK (T4CK) Gate Sync TGATE TCY 1 Set T2IF (T4IF) 0 Reset Q Q D CK
TON 1x
01 00 TCS(1) TGATE(1)
TMR2 (TMR4)
Sync
Equal
Comparator
PR2 (PR4) Note 1: The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.
FIGURE 12-3:
TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM
TON TCKPS<1:0> 2 Prescaler 1, 8, 64, 256
T3CK (T5CK)
Sync
1x
01 00 TCY 1 Set T3IF (T5IF) 0 Reset Q Q D CK TCS(1) TGATE(1)
TGATE
TMR3 (TMR5)
ADC Event Trigger(2) Equal
Comparator
PR3 (PR5)
Note 1: 2:
The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information. The ADC event trigger is available only on Timer3.
2010 Microchip Technology Inc.
DS39940D-page 153
PIC24FJ64GB004 FAMILY
REGISTER 12-1:
R/W-0 TON bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 TGATE R/W-0 TCKPS1 R/W-0 TCKPS0 R/W-0 T32(1) U-0 -- R/W-0 TCS(2) U-0 -- bit 0
TxCON: TIMER2 AND TIMER4 CONTROL REGISTER(3)
U-0 -- R/W-0 TSIDL U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
TON: Timerx On bit When TxCON<3> = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When TxCON<3> = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx Unimplemented: Read as `0' TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 T32: 32-Bit Timer Mode Select bit(1) 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers In 32-bit mode, T3CON control bits do not affect 32-bit timer operation. Unimplemented: Read as `0' TCS: Timerx Clock Source Select bit(2) 1 = External clock from pin, TxCK (on the rising edge) 0 = Internal clock (FOSC/2) Unimplemented: Read as `0' In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation. If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)". Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
bit 14 bit 13
bit 12-7 bit 6
bit 5-4
bit 3
bit 2 bit 1
bit 0 Note 1: 2: 3:
DS39940D-page 154
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 12-2:
R/W-0 TON(1) bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 TGATE(1) R/W-0 TCKPS1(1) R/W-0 TCKPS0(1) U-0 -- U-0 -- R/W-0 TCS(1,2) U-0 -- bit 0
TyCON: TIMER3 AND TIMER5 CONTROL REGISTER(3)
U-0 -- R/W-0 TSIDL(1) U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
TON: Timery On bit(1) 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery Unimplemented: Read as `0' TSIDL: Stop in Idle Mode bit(1) 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' TGATE: Timery Gated Time Accumulation Enable bit(1) When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled TCKPS<1:0>: Timery Input Clock Prescale Select bits(1) 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 Unimplemented: Read as `0' TCS: Timery Clock Source Select bit(1,2) 1 = External clock from pin TyCK (on the rising edge) 0 = Internal clock (FOSC/2) Unimplemented: Read as `0' When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON and T4CON. If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
bit 14 bit 13
bit 12-7 bit 6
bit 5-4
bit 3-2 bit 1
bit 0 Note 1: 2: 3:
2010 Microchip Technology Inc.
DS39940D-page 155
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 156
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
13.0
Note:
INPUT CAPTURE WITH DEDICATED TIMERS
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 34. "Input Capture with Dedicated Timer" (DS39722).
13.1
13.1.1
General Operating Modes
SYNCHRONOUS AND TRIGGER MODES
Devices in the PIC24FJ64GB004 family all feature 5 independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts. Key features of the input capture module include: * Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules * Synchronous and Trigger modes of output compare operation, with up to 20 user-selectable trigger/sync sources available * A 4-level FIFO buffer for capturing and holding timer values for several events * Configurable interrupt generation * Up to 6 clock sources available for each module, driving a separate internal 16-bit counter The module is controlled through two registers: ICxCON1 (Register 13-1) and ICxCON2 (Register 13-2). A general block diagram of the module is shown in Figure 13-1.
By default, the input capture module operates in a free-running mode. The internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer. In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run. Standard, free-running operation is selected by setting the SYNCSEL bits to `00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSEL bits are set to any value except `00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source. When the SYNCSEL bits are set to `00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).
FIGURE 13-1:
INPUT CAPTURE BLOCK DIAGRAM
ICM<2:0> ICI<1:0> Event and Interrupt Logic Set ICxIF
ICx Pin(1)
Prescaler Counter 1:1/4/16 ICTSEL<2:0>
Edge Detect Logic and Clock Synchronizer
IC Clock Sources
Clock Select
Increment ICxTMR
16 4-Level FIFO Buffer 16
Trigger and Sync Logic Trigger and Sync Sources
Reset
16 ICxBUF SYNCSEL<4:0> Trigger ICOV, ICBNE
System Bus
Note 1:
The ICx inputs must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.
2010 Microchip Technology Inc.
DS39940D-page 157
PIC24FJ64GB004 FAMILY
13.1.2 CASCADED (32-BIT) MODE
By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers. Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules. For 32-bit cascaded operations, the setup procedure is slightly different: 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even-numbered module first. This ensures the modules will start functioning in unison. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings. Clear the ICTRIG bit of the even module (ICyCON2<7>); this forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting. Use the odd module's ICI bits (ICxCON1<6:5>) to the desired interrupt frequency. Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation. Note: For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
2.
3.
13.2
Capture Operations
4. 5.
The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx, or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events. To set up the module for capture operations: 1. 2. 3. Configure the ICx input for one of the available Peripheral Pin Select pins. If Synchronous mode is to be used, disable the sync source before proceeding. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source. Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source. If the desired clock source is running, set the ICTSEL bits before the Input Capture module is enabled for proper synchronization with the desired clock source. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency Select Synchronous or Trigger mode operation: a) Check that the SYNCSEL bits are not set to `00000'. b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>). c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>). Set the ICM bits (ICxCON1<2:0>) to the desired operational mode. Enable the selected trigger/sync source.
6.
Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.
4. 5.
The module is ready to capture events when the time base and the trigger/sync source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to `0'. For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the lsw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (perform automatically by hardware).
6. 7.
8. 9.
DS39940D-page 158
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 13-1:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 HCS = Hardware Clearable/Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 ICI1 R/W-0 ICI0 R-0, HCS ICOV R-0, HCS ICBNE R/W-0 ICM2(1) R/W-0 ICM1(1)
ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1
U-0 -- R/W-0 ICSIDL R/W-0 ICTSEL2 R/W-0 ICTSEL1 R/W-0 ICTSEL0 U-0 -- U-0 -- bit 8 R/W-0 ICM0(1) bit 0
Unimplemented: Read as `0' ICSIDL: Input Capture x Module Stop in Idle Control bit 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode ICTSEL<2:0>: Input Capture Timer Select bits 111 = System clock (FOSC/2) 110 = Reserved 101 = Reserved 100 = Timer1 011 = Timer5 010 = Timer4 001 = Timer2 000 = Timer3 Unimplemented: Read as `0' ICI<1:0>: Select Number of Captures per Interrupt bits 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event ICOV: Input Capture x Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred 0 = No input capture overflow occurred ICBNE: Input Capture x Buffer Empty Status bit (read-only) 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty ICM<2:0>: Input Capture Mode Select bits(1) 111 = Interrupt mode: input capture functions as interrupt pin only when device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable) 110 = Unused (module disabled) 101 = Prescaler Capture mode: capture on every 16th rising edge 100 = Prescaler Capture mode: capture on every 4th rising edge 011 = Simple Capture mode: capture on every rising edge 010 = Simple Capture mode: capture on every falling edge 001 = Edge Detect Capture mode: capture on every edge (rising and falling); ICI<1:0 bits do not control interrupt generation for this mode 000 = Input capture module turned off The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
bit 12-10
bit 9-7 bit 6-5
bit 4
bit 3
bit 2-0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 159
PIC24FJ64GB004 FAMILY
REGISTER 13-2:
U-0 -- bit 15 R/W-0 ICTRIG bit 7 Legend: R = Readable bit -n = Value at POR bit 15-9 bit 8 HS = Hardware Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0, HS TRIGSTAT U-0 -- R/W-0 SYNCSEL4 R/W-1 SYNCSEL3 R/W-1 SYNCSEL2 R/W-0 SYNCSEL1
ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 IC32 bit 8 R/W-1 SYNCSEL0 bit 0
Unimplemented: Read as `0' IC32: Cascade Two IC Modules Enable bit (32-bit operation) 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module ICTRIG: ICx Trigger/Sync Select bit 1 = Trigger ICx from source designated by SYNCSELx bits 0 = Synchronize ICx with source designated by SYNCSELx bits TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear Unimplemented: Read as `0' SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = Reserved 11110 = Reserved 11101 = Reserved 11100 = CTMU(1) 11011 = A/D(1) 11010 = Comparator 3(1) 11001 = Comparator 2(1) 11000 = Comparator 1(1) 10111 = Input Capture 4 10110 = Input Capture 3 10101 = Input Capture 2 10100 = Input Capture 1 10011 = Reserved 10010 = Reserved 1000x = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5 01001 = Reserved 01000 = Reserved 00111 = Reserved 00110 = Reserved 00101 = Output Compare 5 00100 = Output Compare 4 00011 = Output Compare 3 00010 = Output Compare 2 00001 = Output Compare 1 00000 = Not synchronized to any other module Use these inputs as trigger sources only and never as sync sources.
bit 7
bit 6
bit 5 bit 4-0
Note 1:
DS39940D-page 160
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
14.0
Note:
OUTPUT COMPARE WITH DEDICATED TIMERS
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 35. "Output Capture with Dedicated Timer" (DS39723).
In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run. Free-Running mode is selected by default or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to `00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except `00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.
All devices in the PIC24FJ64GB004 family features 5 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications. Key features of the output compare module include: * Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules * Synchronous and Trigger modes of output compare operation, with up to 21 user-selectable trigger/sync sources available * Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths * Configurable for single pulse or continuous pulse generation on an output event or continuous PWM waveform generation * Up to 6 clock sources available for each module, driving a separate internal 16-bit counter
14.1.2
CASCADED (32-BIT) MODE
By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase the range, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd-numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even-numbered module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers. Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules.
14.1
14.1.1
General Operating Modes
SYNCHRONOUS AND TRIGGER MODES
By default, the output compare module operates in a Free-Running mode. The internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from FFFFh to 0000h on each overflow with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 161
PIC24FJ64GB004 FAMILY
FIGURE 14-1: OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)
DCBx OCMx OCINV OCTRIS FLTOUT FLTTRIEN FLTMD ENFLTx OCFLTx Match Event
OCxCON1
OCTSELx SYNCSELx TRIGSTAT TRIGMODE OCTRIG
OCxCON2
OCxR Comparator
OCx Pin(1)
OC Clock Sources
Clock Select
Increment
OCxTMR
Reset
OC Output and Fault Logic
Match Event
Match Event
Comparator OCxRS
OCFA/ OCFB/ CxOUT
Trigger and Sync Sources
Trigger and Sync Logic
Reset
OCx Interrupt Note 1: The OCx outputs must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.
DS39940D-page 162
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
14.2 Compare Operations
In Compare mode (Figure 14-1), the output compare module can be configured for single-shot or continuous pulse generation; it can also repeatedly toggle an output pin on each timer event. To set up the module for compare operations: 1. 2. Configure the OCx output for one of the available Peripheral Pin Select pins. Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers: a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings. b) Calculate time to the rising edge of the output pulse relative to the timer start value (0000h). c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse. Write the rising edge value to OCxR and the falling edge value to OCxRS. For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG. Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSEL bits to `00000' (no sync/trigger source). Select the time base source with the OCTSEL<2:0> bits. If the desired clock source is running, set the OCTSEL<2:0> bits before the output compare module is enabled for proper synchronization with the desired clock source. If necessary, set the TON bit for the selected timer which enables the compare time base to count. Synchronous mode operation starts as soon as the synchronization source is enabled. Trigger mode operation starts after a trigger source event occurs. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx). For 32-bit cascaded operation, these steps are also necessary: 1. Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even-numbered module first to ensure the modules will start functioning in unison. Clear the OCTRIG bit of the even module (OCyCON2), so the module will run in Synchronous mode. Configure the desired output and Fault settings for OCy. Force the output pin for OCx to the output state by clearing the OCTRIS bit. If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>) and SYNCSEL (OCxCON2<4:0>) bits. Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.
2.
3. 4. 5.
6.
3. 4.
Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes. Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.
5.
6.
7.
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 163
PIC24FJ64GB004 FAMILY
14.3 Pulse-Width Modulation (PWM) Mode
5. 6. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON1<12:10>) bits. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit. Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space). To configure the output compare edge-aligned PWM operation: 1. 2. 3. 4. module for
7. 8.
Configure the OCx output for one of the available Peripheral Pin Select pins. Calculate the desired on-time and load it into the OCxR register. Calculate the desired period and load it into the OCxRS register. Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and `0' to OCTRIG (OCxCON2<7>).
FIGURE 14-2:
OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)
OCxCON1 OCxCON2
OCTSELx SYNCSELx TRIGSTAT TRIGMODE OCTRIG
OCxR and DCB<1:0>
Rollover/Reset
OCxR and DCB<1:0> Buffers Comparator
OCMx OCINV OCTRIS FLTOUT FLTTRIEN FLTMD ENFLTx OCFLTx DCB<1:0>
OCx Pin(1) OC Clock Sources Clock Select
Increment Match Event Rollover OC Output Timing and Fault Logic
OCxTMR
Reset Match Event
Comparator OCxRS Buffer
Trigger and Sync Sources
Trigger and Sync Logic
Match Event
OCFA/OCFB/CxOUT
Rollover/Reset
OCxRS OCx Interrupt
Reset
Note 1:
The OCx outputs must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.
DS39940D-page 164
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
14.3.1 PWM PERIOD 14.3.2 PWM DUTY CYCLE
In edge aligned PWM mode, the period is specified by the value of OCxRS register. In center aligned PWM mode, the period of the synchronization source such as Timer's PRy specifies the period. The period in both cases can be calculated using Equation 14-1. The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a period is complete. This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation. Some important boundary parameters of the PWM duty cycle include: * Edge-Aligned PWM - If OCxR and OCxRS are loaded with 0000h, the OCx pin will remain low (0% duty cycle). - If OCxRS is greater than OCxR, the pin will remain high (100% duty cycle). * Center-Aligned PWM (with TMRy as the sync source) - If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle). - If OCxRS is greater than PRy, the pin will go high (100% duty cycle). See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.
EQUATION 14-1:
CALCULATING THE PWM PERIOD(1)
PWM Period = [Value + 1] x TCY x (Prescaler Value) Where: Value = OCxRS in Edge-Aligned PWM mode and can be PRy in Center-Aligned PWM mode (If TMRy is the sync source). Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.
EQUATION 14-2:
CALCULATION FOR MAXIMUM PWM RESOLUTION(1)
log10 Maximum PWM Resolution (bits) = FCY (FPWM * (Prescale Value) log10(2)
) bits
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
EXAMPLE 14-1:
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)
1. Find the OCxRS register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock rate) and a prescaler setting of 1:1 using Edge-Aligned PWM mode. TCY = 2 * TOSC = 62.5 ns PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s PWM Period = (OCxRS + 1) * TCY * (OCx Prescale Value) 19.2 s = (OCxRS + 1) * 62.5 ns * 1 OCxRS = 306 2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = log10 (FCY/FPWM)/log102) bits = (log10 (16 MHz/52.08 kHz)/log102) bits = 8.3 bits Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 165
PIC24FJ64GB004 FAMILY
14.4 Subcycle Resolution
The DCB bits (OCxCON2<10:9>) provide for resolution better than one instruction cycle. When used, they delay the falling edge generated by a match event by a portion of an instruction cycle. For example, setting DCB<1:0> = 10 causes the falling edge to occur half way through the instruction cycle in which the match event occurs, instead of at the beginning. These bits cannot be used when OCM<2:0> = 001. When operating the module in PWM mode (OCM<2:0> = 110 or 111), the DCB bits will be double-buffered. The DCB bits are intended for use with a clock source identical to the system clock. When an OCx module with enabled prescaler is used, the falling edge delay caused by the DCB bits will be referenced to the system clock period, rather than the OCx module's period.
TABLE 14-1:
Prescaler Ratio Period Value Resolution (bits) Note 1:
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)
7.6 Hz 8 FFFFh 16 61 Hz 1 FFFFh 16 122 Hz 1 7FFFh 15 977 Hz 1 0FFFh 12 3.9 kHz 1 03FFh 10 31.3 kHz 1 007Fh 7 125 kHz 1 001Fh 5
PWM Frequency
Based on FCY = FOSC/2; Doze mode and PLL are disabled.
TABLE 14-2:
Prescaler Ratio Period Value Resolution (bits) Note 1:
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)
30.5 Hz 8 FFFFh 16 244 Hz 1 FFFFh 16 488 Hz 1 7FFFh 15 3.9 kHz 1 0FFFh 12 15.6 kHz 1 03FFh 10 125 kHz 1 007Fh 7 500 kHz 1 001Fh 5
PWM Frequency
Based on FCY = FOSC/2; Doze mode and PLL are disabled.
DS39940D-page 166
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 14-1:
U-0 -- bit 15 R/W-0 ENFLT0 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-14 bit 13 HCS = Hardware Clearable/Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0, HCS OCFLT2 R/W-0, HCS OCFLT1 R/W-0, HCS OCFLT0 R/W-0 TRIGMODE R/W-0 OCM2(1) R/W-0 OCM1(1)
OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1
U-0 -- R/W-0 OCSIDL R/W-0 OCTSEL2 R/W-0 OCTSEL1 R/W-0 OCTSEL0 R/W-0 ENFLT2
(2)
R/W-0 ENFLT1 bit 8 R/W-0 OCM0(1) bit 0
Unimplemented: Read as `0' OCSIDL: Stop Output Compare x in Idle Mode Control bit 1 = Output compare x halts in CPU Idle mode 0 = Output compare x continues to operate in CPU Idle mode OCTSEL<2:0>: Output Compare x Timer Select bits 111 = System clock 110 = Reserved 101 = Reserved 100 = Timer1 011 = Timer5 010 = Timer4 001 = Timer3 000 = Timer2 ENFLT2: Comparator Fault Input Enable bit(2) 1 = Comparator Fault input is enabled 0 = Comparator Fault input is disabled ENFLT1: OCFB Fault Input Enable bit 1 = OCFB Fault input is enabled 0 = OCFB Fault input is disabled ENFLT0: OCFA Fault Input Enable bit 1 = OCFA Fault input is enabled 0 = OCFA Fault input is disabled OCFLT2: PWM Comparator Fault Condition Status bit(2) 1 = PWM comparator Fault condition has occurred (this is cleared in hardware only) 0 = PWM comparator Fault condition has not occurred (this bit is used only when OCM<2:0> = 111) OCFLT1: PWM OCFB Fault Input Enable bit 1 = PWM OCFB Fault condition has occurred (this is cleared in hardware only) 0 = PWM OCFB Fault condition has not occurred (this bit is used only when OCM<2:0> = 111) OCFLT0: PWM OCFA Fault Condition Status bit 1 = PWM OCFA Fault condition has occurred (this is cleared in hardware only) 0 = PWM OCFA Fault condition has not occurred (this bit is used only when OCM<2:0> = 111) TRIGMODE: Trigger Status Mode Select bit 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software 0 = TRIGSTAT is only cleared by software The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)". The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.
bit 12-10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4
bit 3
Note 1: 2:
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 167
PIC24FJ64GB004 FAMILY
REGISTER 14-1:
bit 2-0
OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)
OCM<2:0>: Output Compare x Mode Select bits(1) 111 = Center-Aligned PWM mode on OCx 110 = Edge-Aligned PWM mode on OCx 101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS 100 = Double Compare Single-Shot mode: initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle 011 = Single Compare Continuous Pulse mode: compare events continuously toggle OCx pin 010 = Single Compare Single-Shot mode: initialize OCx pin high, compare event forces OCx pin low 001 = Single Compare Single-Shot mode: initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)". The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.
Note 1: 2:
DS39940D-page 168
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 14-2:
R/W-0 FLTMD bit 15 R/W-0 OCTRIG bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HS = Hardware Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0, HS TRIGSTAT R/W-0 OCTRIS R/W-0 SYNCSEL4 R/W-1 SYNCSEL3 R/W-1 SYNCSEL2 R/W-0 SYNCSEL1
OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2
R/W-0 FLTTRIEN R/W-0 OCINV U-0 -- R/W-0 DCB1
(3)
R/W-0 FLTOUT
R/W-0 DCB0
(3)
R/W-0 OC32 bit 8 R/W-0 SYNCSEL0 bit 0
FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is cleared in software 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault FLTTRIEN: Fault Output State Select bit 1 = Pin is forced to an output on a Fault condition 0 = Pin I/O condition is unaffected by a Fault OCINV: OCMP Invert bit 1 = OCx output is inverted 0 = OCx output is not inverted Unimplemented: Read as `0' DCB<1:0>: OC Pulse-Width Least Significant bits(3) 11 = Delay OCx falling edge by 3/4 of the instruction cycle 10 = Delay OCx falling edge by 1/2 of the instruction cycle 01 = Delay OCx falling edge by 1/4 of the instruction cycle 00 = OCx falling edge occurs at start of the instruction cycle OC32: Cascade Two OC Modules Enable bit (32-bit operation) 1 = Cascade module operation enabled 0 = Cascade module operation disabled OCTRIG: OCx Trigger/Sync Select bit 1 = Trigger OCx from source designated by SYNCSELx bits 0 = Synchronize OCx with source designated by SYNCSELx bits TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear OCTRIS: OCx Output Pin Direction Select bit 1 = OCx pin is tri-stated 0 = Output compare peripheral x connected to OCx pin
bit 14
bit 13
bit 12
bit 11 bit 10-9
bit 8
bit 7
bit 6
bit 5
Note 1: 2: 3:
Do not use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting. Use these inputs as trigger sources only and never as sync sources. These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCM bits (OCxCON1<1:0>) = 001.
2010 Microchip Technology Inc.
Preliminary
DS39940D-page 169
PIC24FJ64GB004 FAMILY
REGISTER 14-2:
bit 4-0
OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)
SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = This OC module(1) 11110 = Reserved 11101 = Reserved 11100 = CTMU(2) 11011 = A/D(2) 11010 = Comparator 3(2) 11001 = Comparator 2(2) 11000 = Comparator 1(2) 10111 = Input Capture 4(2) 10110 = Input Capture 3(2) 10101 = Input Capture 2(2) 10100 = Input Capture 1(2) 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5(2) 01001 = Reserved 01000 = Reserved 00111 = Reserved 00110 = Reserved 00101 = Output Compare 5(1) 00100 = Output Compare 4(1) 00011 = Output Compare 3(1) 00010 = Output Compare 2(1) 00001 = Output Compare 1(1) 00000 = Not synchronized to any other module Do not use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting. Use these inputs as trigger sources only and never as sync sources. These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCM bits (OCxCON1<1:0>) = 001.
Note 1: 2: 3:
DS39940D-page 170
Preliminary
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
15.0
Note:
SERIAL PERIPHERAL INTERFACE (SPI)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 23. "Serial Peripheral Interface (SPI)" (DS39699).
The SPI serial interface consists of four pins: * * * * SDIx: Serial Data Input SDOx: Serial Data Output SCKx: Shift Clock Input or Output SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse
The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used. Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2. Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.
The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola(R) SPI and SIOP interfaces. All devices of the PIC24FJ64GB004 family include three SPI modules The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer. Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.
The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.
2010 Microchip Technology Inc.
DS39940D-page 171
PIC24FJ64GB004 FAMILY
To set up the SPI module for the Standard Master mode of operation: 1. If using interrupts: a) Clear the SPIxIF bit in the respective IFS register. b) Set the SPIxIE bit in the respective IEC register. c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1. Clear the SPIROV bit (SPIxSTAT<6>). Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>). Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register. To set up the SPI module for the Standard Slave mode of operation: 1. 2. Clear the SPIxBUF register. If using interrupts: a) Clear the SPIxIF bit in the respective IFS register. b) Set the SPIxIE bit in the respective IEC register. c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0. Clear the SMP bit. If the CKE bit (SPIxCON1<8>) is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin. Clear the SPIROV bit (SPIxSTAT<6>). Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
2.
3.
3. 4. 5.
4. 5.
6. 7.
FIGURE 15-1:
SCKx
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)
1:1 to 1:8 Secondary Prescaler Sync Control Control Clock Shift Control Select Edge 1:1/4/16/64 Primary Prescaler
FCY
SSx/FSYNCx
SPIxCON1<1:0> SPIxCON1<4:2> Enable Master Clock
SDOx SDIx bit 0
SPIxSR
Transfer
Transfer
SPIxBUF
Read SPIxBUF
Write SPIxBUF 16 Internal Data Bus
DS39940D-page 172
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
To set up the SPI module for the Enhanced Buffer Master mode of operation: 1. If using interrupts: a) Clear the SPIxIF bit in the respective IFS register. b) Set the SPIxIE bit in the respective IEC register. c) Write the SPIxIP bits in the respective IPC register. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1. Clear the SPIROV bit (SPIxSTAT<6>). Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>). Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>). Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register. To set up the SPI module for the Enhanced Buffer Slave mode of operation: 1. 2. Clear the SPIxBUF register. If using interrupts: a) Clear the SPIxIF bit in the respective IFS register. b) Set the SPIxIE bit in the respective IEC register. c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority. Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0. Clear the SMP bit. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin. Clear the SPIROV bit (SPIxSTAT<6>). Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>). Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
2.
3.
3. 4. 5. 6.
4. 5. 6. 7. 8.
FIGURE 15-2:
SCKx
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)
1:1 to 1:8 Secondary Prescaler Sync Control Control Clock Shift Control Select Edge 1:1/4/16/64 Primary Prescaler FCY
SSx/FSYNCx
SPIxCON1<1:0> SPIxCON1<4:2> Enable Master Clock
SDOx SDIx bit 0
SPIxSR
Transfer
Transfer
8-Level FIFO Receive Buffer
8-Level FIFO Transmit Buffer
SPIxBUF
Read SPIxBUF
Write SPIxBUF 16 Internal Data Bus
2010 Microchip Technology Inc.
DS39940D-page 173
PIC24FJ64GB004 FAMILY
REGISTER 15-1:
R/W-0 SPIEN bit 15 R-0 SRMPT bit 7 Legend: R = Readable bit -n = Value at POR bit 15 C = Clearable bit W = Writable bit `1' = Bit is set HS = Hardware Settable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/C-0, HS SPIROV R/W-0 SRXMPT R/W-0 SISEL2 R/W-0 SISEL1 R/W-0 SISEL0 R-0 SPITBF R-0 SPIRBF bit 0
(1)
SPIxSTAT: SPIx STATUS AND CONTROL REGISTER
U-0 -- R/W-0 SPISIDL U-0 -- U-0 -- R-0 SPIBEC2 R-0 SPIBEC1 R-0 SPIBEC0 bit 8
SPIEN: SPIx Enable bit(1) 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module Unimplemented: Read as `0' SPISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit set) If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 14 bit 13
bit 12-11 bit 10-8
bit 7
bit 6
bit 5
bit 4-2
Note 1:
DS39940D-page 174
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 15-1:
bit 1
SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)
SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started; SPIxTXB is full 0 = Transmit started; SPIxTXB is empty In Standard Buffer mode: Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. In Enhanced Buffer mode: Automatically set in hardware when CPU writes SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write. SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty In Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB. In Enhanced Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR. If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 175
PIC24FJ64GB004 FAMILY
REGISTER 15-2:
U-0 -- bit 15 R/W-0 SSEN bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
(4)
SPIXCON1: SPIx CONTROL REGISTER 1
U-0 -- U-0 -- R/W-0 DISSCK(1) R/W-0 DISSDO(2) R/W-0 MODE16 R/W-0 SMP R/W-0 CKE(3) bit 8
R/W-0 CKP
R/W-0 MSTEN
R/W-0 SPRE2
R/W-0 SPRE1
R/W-0 SPRE0
R/W-0 PPRE1
R/W-0 PPRE0 bit 0
Unimplemented: Read as `0' DISSCK: Disable SCKx pin bit (SPI Master modes only)(1) 1 = Internal SPI clock is disabled; pin functions as I/O 0 = Internal SPI clock is enabled DISSDO: Disable SDOx pin bit(2) 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) SMP: SPIx Data Input Sample Phase bit Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time Slave mode: SMP must be cleared when SPIx is used in Slave mode. CKE: SPIx Clock Edge Select bit(3) 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) SSEN: Slave Select Enable (Slave mode) bit(4) 1 = SSx pin used for Slave mode 0 = SSx pin not used by module; pin controlled by port function CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level MSTEN: Master Mode Enable bit 1 = Master mode 0 = Slave mode If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. The CKE bit is not used in the Framed SPI modes. The user should program this bit to `0' for the Framed SPI modes (FRMEN = 1). If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
Note 1: 2: 3: 4:
DS39940D-page 176
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 15-2:
bit 4-2
SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)
SPRE<2:0>: Secondary Prescale bits (Master mode) 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 ... 000 = Secondary prescale 8:1 PPRE<1:0>: Primary Prescale bits (Master mode) 11 = Primary prescale 1:1 10 = Primary prescale 4:1 01 = Primary prescale 16:1 00 = Primary prescale 64:1 If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. The CKE bit is not used in the Framed SPI modes. The user should program this bit to `0' for the Framed SPI modes (FRMEN = 1). If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 1-0
Note 1: 2: 3: 4:
REGISTER 15-3:
R/W-0 FRMEN bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15
SPIxCON2: SPIx CONTROL REGISTER 2
R/W-0 SPIFPOL U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 SPIFE R/W-0 SPIBEN bit 0
R/W-0 SPIFSD
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
FRMEN: Framed SPIx Support bit 1 = Framed SPIx support enabled 0 = Framed SPIx support disabled SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit 1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master) SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only) 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low Unimplemented: Read as `0' SPIFE: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock SPIBEN: Enhanced Buffer Enable bit 1 = Enhanced buffer enabled 0 = Enhanced buffer disabled (Legacy mode)
bit 14
bit 13
bit 12-2 bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 177
PIC24FJ64GB004 FAMILY
FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)
PROCESSOR 1 (SPI Master) PROCESSOR 2 (SPI Slave)
SDOx
SDIx
Serial Receive Buffer (SPIxRXB)
Serial Receive Buffer (SPIxRXB)
Shift Register (SPIxSR) MSb LSb
SDIx
SDOx MSb
Shift Register (SPIxSR) LSb
Serial Transmit Buffer (SPIxTXB)
Serial Transmit Buffer (SPIxTXB)
SPIx Buffer (SPIxBUF)(2)
SCKx
Serial Clock
SCKx
SPIx Buffer (SPIxBUF)(2)
SSx(1) MSTEN (SPIxCON1<5>) = 1) Note 1: 2: SSEN (SPIxCON1<7>) = 1 and MSTEN (SPIxCON1<5>) = 0
Using the SSx pin in Slave mode of operation is optional. User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory mapped to SPIxBUF.
FIGURE 15-4:
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)
PROCESSOR 2 (SPI Enhanced Buffer Slave)
SDIx
PROCESSOR 1 (SPI Enhanced Buffer Master)
SDOx
Shift Register (SPIxSR) MSb LSb
SDIx
SDOx
Shift Register (SPIxSR) MSb LSb
8-Level FIFO Buffer
8-Level FIFO Buffer
SPIx Buffer (SPIxBUF)(2)
SCKx
Serial Clock
SCKx SSx(1)
SPIx Buffer (SPIxBUF)(2)
SSx
MSTEN (SPIxCON1<5>) = 1 and SPIBEN (SPIxCON2<0>) = 1 Note 1: 2:
SSEN (SPIxCON1<7>) = 1, MSTEN (SPIxCON1<5>) = 0 and SPIBEN (SPIxCON2<0>) = 1
Using the SSx pin in Slave mode of operation is optional. User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory mapped to SPIxBUF.
DS39940D-page 178
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
FIGURE 15-5: SPI MASTER, FRAME MASTER CONNECTION DIAGRAM
PIC24F (SPI Master, Frame Master) SDOx SDIx PROCESSOR 2
SDIx SCKx SSx Serial Clock
SDOx SCKx SSx
Frame Sync Pulse
FIGURE 15-6:
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM
PIC24F SPI Master, Frame Slave) SDOx SDIx SCKx SSx Serial Clock SDIx SDOx SCKx SSx PROCESSOR 2
Frame Sync Pulse
FIGURE 15-7:
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM
PIC24F (SPI Slave, Frame Master) SDOx SDIx PROCESSOR 2
SDIx SCKx SSx Serial Clock
SDOx SCKx SSx
Frame Sync. Pulse
FIGURE 15-8:
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM
PIC24F (SPI Slave, Frame Slave) SDOx SDIx PROCESSOR 2
SDIx SCKx SSx Serial Clock
SDOx SCKx SSx
Frame Sync Pulse
2010 Microchip Technology Inc.
DS39940D-page 179
PIC24FJ64GB004 FAMILY
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)
FSCK = FCY Primary Prescaler * Secondary Prescaler
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
TABLE 15-1:
SAMPLE SCK FREQUENCIES(1,2)
FCY = 16 MHz Secondary Prescaler Settings 1:1 1:1 4:1 16:1 64:1 FCY = 5 MHz Invalid 4000 1000 250 2:1 8000 2000 500 125 4:1 4000 1000 250 63 6:1 2667 667 167 42 8:1 2000 500 125 31
Primary Prescaler Settings
Primary Prescaler Settings
1:1 4:1 16:1 64:1
5000 1250 313 78
2500 625 156 39
1250 313 78 20
833 208 52 13
625 156 39 10
Note 1: 2:
Based on FCY = FOSC/2, Doze mode and PLL are disabled. SCKx frequencies shown in kHz.
DS39940D-page 180
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
16.0
Note:
INTER-INTEGRATED CIRCUIT (I2CTM)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 24. "Inter-Integrated CircuitTM (I2CTM)" (DS39702).
16.1
Communicating as a Master in a Single Master Environment
The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Assert a Start condition on SDAx and SCLx. Send the I 2C device address byte to the slave with a write indication. Wait for and verify an Acknowledge from the slave. Send the first data byte (sometimes known as the command) to the slave. Wait for and verify an Acknowledge from the slave. Send the serial memory address low byte to the slave. Repeat steps 4 and 5 until all data bytes are sent. Assert a Repeated Start condition on SDAx and SCLx. Send the device address byte to the slave with a read indication. Wait for and verify an Acknowledge from the slave. Enable master reception to receive serial memory data. Generate an ACK or NACK condition at the end of a received byte of data. Generate a Stop condition on SDAx and SCLx.
The Inter-Integrated Circuit (I2C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc. The I * * * * * * * * *
2C
module supports these features:
Independent master and slave logic 7-bit and 10-bit device addresses General call address as defined in the I2C protocol Clock stretching to provide delays for the processor to respond to a slave data request Both 100 kHz and 400 kHz bus specifications. Configurable address masking Multi-Master modes to prevent loss of messages in arbitration Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address Automatic SCL
A block diagram of the module is shown in Figure 16-1.
2010 Microchip Technology Inc.
DS39940D-page 181
PIC24FJ64GB004 FAMILY
FIGURE 16-1: I2CTM BLOCK DIAGRAM
Internal Data Bus I2CxRCV Shift Clock I2CxRSR LSB SDAx Address Match Read
SCLx
Match Detect
Write I2CxMSK Write Read
I2CxADD Read Start and Stop Bit Detect Start and Stop Bit Generation Control Logic
Write I2CxSTAT Read Write I2CxCON Read
Collision Detect
Acknowledge Generation Clock Stretching
Write
I2CxTRN Shift Clock Reload Control LSB Read
Write I2CxBRG Read
BRG Down Counter
TCY/2
DS39940D-page 182
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
16.2 Setting Baud Rate When Operating as a Bus Master 16.3 Slave Address Masking
The I2CxMSK register (Register 16-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a `0' or a `1'. For example, when I2CxMSK is set to `00100000', the slave module will detect both addresses: `0000000' and `0100000'. To enable address masking, the IPMI (Intelligent Peripheral Management Interface) must be disabled by clearing the IPMIEN bit (I2CxCON<11>). Note: As a result of changes in the I2CTM protocol, the addresses in Table 16-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.
To compute the Baud Rate Generator (BRG) reload value, use Equation 16-1.
EQUATION 16-1:
COMPUTING BAUD RATE RELOAD VALUE(1,2)
FCY FSCL = --------------------------------------------------------------------FCY I2CxBRG + 1 + ----------------------------10 000 000 or FCY FCY I2CxBRG = ----------- - ----------------------------- - 1 FSCL 10 000 000 Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled. 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.
TABLE 16-1:
I2CTM CLOCK RATES(1,2)
FCY 16 MHz 8 MHz 4 MHz 16 MHz 8 MHz 4 MHz 2 MHz 16 MHz 8 MHz I2CxBRG Value (Decimal) 157 78 39 37 18 9 4 13 6 (Hexadecimal) 9D 4E 27 25 12 9 4 D 6 Actual FSCL 100 kHz 100 kHz 99 kHz 404 kHz 404 kHz 385 kHz 385 kHz 1.026 MHz 1.026 MHz
Required System FSCL 100 kHz 100 kHz 100 kHz 400 kHz 400 kHz 400 kHz 400 kHz 1 MHz 1 MHz
1 MHz 4 MHz 3 3 0.909 MHz Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled. 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.
TABLE 16-2:
Slave Address 0000 000 0000 000 0000 001 0000 010 0000 011 0000 1xx 1111 1xx 1111 0xx Note 1: 2: 3:
I2CTM RESERVED ADDRESSES(1)
R/W Bit 0 1 x x x x x x General Call Start Byte Cbus Address Reserved Reserved HS Mode Master Code Reserved 10-Bit Slave Upper Byte(3) Address(2) Description
The address bits listed here will never cause an address match, independent of address mask settings. The address will be Acknowledged only if GCEN = 1. A match on this address can only occur on the upper byte in 10-Bit Addressing mode.
DS39940D-page 183
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 16-1:
R/W-0 I2CEN bit 15 R/W-0 GCEN bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HC = Hardware Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 STREN R/W-0 ACKDT R/W-0, HC ACKEN R/W-0, HC RCEN R/W-0, HC PEN R/W-0, HC RSEN
I2CxCON: I2Cx CONTROL REGISTER
U-0 -- R/W-0 I2CSIDL R/W-1, HC SCLREL R/W-0 IPMIEN R/W-0 A10M R/W-0 DISSLW R/W-0 SMEN bit 8 R/W-0, HC SEN bit 0
I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I2C pins are controlled by port functions. Unimplemented: Read as `0' I2CSIDL: Stop in Idle Mode bit 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode SCLREL: SCLx Release Control bit (when operating as I2C Slave) 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write `0' to initiate stretch and write `1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write `1' to release clock). Hardware clear at beginning of slave transmission. IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit 1 = IPMI Support mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled A10M: 10-Bit Slave Addressing bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds GCEN: General Call Enable bit (when operating as I2C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receive clock stretching 0 = Disables software or receive clock stretching
bit 14 bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
DS39940D-page 184
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 16-1:
bit 5
I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)
ACKDT: Acknowledge Data bit (When operating as I2C master. Applicable during master receive.) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge ACKEN: Acknowledge Sequence Enable bit (When operating as I2C master. Applicable during master receive.) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress RCEN: Receive Enable bit (when operating as I2C master) 1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receives sequence not in progress PEN: Stop Condition Enable bit (when operating as I2C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress RSEN: Repeated Start Condition Enabled bit (when operating as I2C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress SEN: Start Condition Enabled bit (when operating as I2C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress
bit 4
bit 3
bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 185
PIC24FJ64GB004 FAMILY
REGISTER 16-2:
R-0, HSC R-0, HSC ACKSTAT bit 15 R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC IWCOL bit 7 Legend: R = Readable bit -n = Value at POR bit 15 C = Clearable bit W = Writable bit `1' = Bit is set HS = Hardware Settable bit `0' = Bit is cleared I2COV D/A P R/C-0, HSC S R-0, HSC R/W R-0, HSC RBF R-0, HSC TBF bit 0 HSC = Hardware Settable/Clearable bit x = Bit is unknown TRSTAT
I2CxSTAT: I2Cx STATUS REGISTER
U-0 -- U-0 -- U-0 -- R/C-0, HS BCL R-0, HSC GCSTAT R-0, HSC ADD10 bit 8
U = Unimplemented bit, read as `0'
ACKSTAT: Acknowledge Status bit 1 = NACK was detected last 0 = ACK was detected last Hardware set or clear at the end of Acknowledge. TRSTAT: Transmit Status bit (When operating as I2C master. Applicable to master transmit operation.) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at the beginning of master transmission. Hardware clear at the end of slave Acknowledge. Unimplemented: Read as `0' BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of bus collision. GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches the general call address. Hardware clear at the Stop detection. ADD10: 10-Bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at the match of the 2nd byte of matched 10-bit address. Hardware clear at the Stop detection. IWCOL: Write Collision Detect bit 1 = An attempt to write to the I2CxTRN register failed because the I2C module is busy 0 = No collision Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). D/A: Data/Address bit (when operating as I2C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was the device address Hardware clear occurs at device address match. Hardware set after a transmission finishes or at reception of the slave byte.
bit 14
bit 13-11 bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
DS39940D-page 186
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 16-2:
bit 4
I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)
P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop is detected. S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop is detected. R/W: Read/Write Information bit (when operating as I2C slave) 1 = Read - indicates data transfer is output from slave 0 = Write - indicates data transfer is input to slave Hardware set or clear after reception of I 2C device address byte. RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.
bit 3
bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 187
PIC24FJ64GB004 FAMILY
REGISTER 16-3:
U-0 -- bit 15 R/W-0 AMSK7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-10 bit 9-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 AMSK6 R/W-0 AMSK5 R/W-0 AMSK4 R/W-0 AMSK3 R/W-0 AMSK2 R/W-0 AMSK1
I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 AMSK9 R/W-0 AMSK8 bit 8 R/W-0 AMSK0 bit 0
Unimplemented: Read as `0' AMSK<9:0>: Mask for Address Bit x Select bits 1 = Enable masking for bit x of incoming message address; bit match not required in this position 0 = Disable masking for bit x; bit match required in this position
DS39940D-page 188
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 21. "UART" (DS39708). * Fully Integrated Baud Rate Generator with 16-Bit Prescaler * Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS * 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer * 4-Deep FIFO Receive Data Buffer * Parity, Framing and Buffer Overrun Error Detection * Support for 9-Bit mode with Address Detect (9th bit = 1) * Transmit and Receive Interrupts * Loopback mode for Diagnostic Support * Support for Sync and Break Characters * Supports Automatic Baud Rate Detection * IrDA Encoder and Decoder Logic * 16x Baud Clock Output for IrDA Support A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements: * Baud Rate Generator * Asynchronous Transmitter * Asynchronous Receiver
Note:
The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA(R) encoder and decoder. The primary features of the UART module are: * Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX pins * Even, Odd or No Parity Options (for 8-bit data) * One or Two Stop bits * Hardware Flow Control Option with UxCTS and UxRTS pins
FIGURE 17-1:
UART SIMPLIFIED BLOCK DIAGRAM
Baud Rate Generator
IrDA(R)
Hardware Flow Control
UxRTS/BCLKx UxCTS
UARTx Receiver
UxRX
UARTx Transmitter
UxTX
Note:
The UART inputs and outputs must all be assigned to available RPn pins before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.
2010 Microchip Technology Inc.
DS39940D-page 189
PIC24FJ64GB004 FAMILY
17.1 UART Baud Rate Generator (BRG)
The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0. The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536). Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.
EQUATION 17-2:
EQUATION 17-1:
Baud Rate =
UART BAUD RATE WITH BRGH = 0(1,2)
FCY 16 * (UxBRG + 1) FCY -1 16 * Baud Rate
UART BAUD RATE WITH BRGH = 1(1,2)
FCY 4 * (UxBRG + 1) FCY 4 * Baud Rate -1
Baud Rate =
UxBRG = UxBRG = Note 1: 2: Note 1: 2:
FCY denotes the instruction cycle clock frequency (FOSC/2). Based on FCY = FOSC/2, Doze mode and PLL are disabled.
FCY denotes the instruction cycle clock frequency. Based on FCY = FOSC/2, Doze mode and PLL are disabled.
Example 17-1 shows the calculation of the baud rate error for the following conditions: * FCY = 4 MHz * Desired Baud Rate = 9600
The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536). Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.
EXAMPLE 17-1:
Desired Baud Rate UxBRG UxBRG UxBRG
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)
= FCY/(16 (UxBRG + 1)) = ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1 = 25
Solving for UxBRG Value:
Calculated Baud Rate = 4000000/(16 (25 + 1)) = 9615 Error = (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600 = 0.16% Based on FCY = FOSC/2, Doze mode and PLL are disabled.
Note 1:
DS39940D-page 190
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
17.2
1.
Transmitting in 8-Bit Data Mode
17.5
1. 2. 3.
2. 3. 4.
5.
6.
Set up the UART: a) Write appropriate values for data, parity and Stop bits. b) Write appropriate baud rate value to the UxBRG register. c) Set up transmit and receive interrupt enable and priority bits. Enable the UART. Set the UTXEN bit (causes a transmit interrupt two cycles after being set). Write data byte to the lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock. Alternately, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.
Receiving in 8-Bit or 9-Bit Data Mode
4.
5.
Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode"). Enable the UART. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software. Read UxRXREG.
The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.
17.6
Operation of UxCTS and UxRTS Control Pins
17.3
1. 2. 3. 4. 5.
Transmitting in 9-Bit Data Mode
6.
Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode"). Enable the UART. Set the UTXEN bit (causes a transmit interrupt). Write UxTXREG as a 16-bit value only. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.
UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.
17.7
Infrared Support
The UART module provides two types of infrared UART support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is `0'.
17.7.1
17.4
Break and Sync Transmit Sequence
IRDA CLOCK OUTPUT FOR EXTERNAL IRDA SUPPORT
The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. 1. 2. 3. 4. 5. Configure the UART for the desired mode. Set UTXEN and UTXBRK to set up the Break character. Load the UxTXREG with a dummy character to initiate transmission (value is ignored). Write `55h' to UxTXREG; this loads the Sync character into the transmit FIFO. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.
To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.
17.7.2
BUILT-IN IRDA ENCODER AND DECODER
The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.
2010 Microchip Technology Inc.
DS39940D-page 191
PIC24FJ64GB004 FAMILY
REGISTER 17-1:
R/W-0 UARTEN bit 15 R/W-0, HC WAKE bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HC = Hardware Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 LPBACK R/W-0, HC ABAUD R/W-0 RXINV R/W-0 BRGH R/W-0 PDSEL1 R/W-0 PDSEL0
(1)
UxMODE: UARTx MODE REGISTER
R/W-0 USIDL R/W-0 IREN
(2)
U-0 --
R/W-0 RTSMD
U-0 --
R/W-0 UEN1
R/W-0 UEN0 bit 8 R/W-0 STSEL bit 0
UARTEN: UARTx Enable bit(1) 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal Unimplemented: Read as `0' USIDL: Stop in Idle Mode bit 1 = Discontinue module operation when the device enters Idle mode 0 = Continue module operation in Idle mode IREN: IrDA(R) Encoder and Decoder Enable bit(2) 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled RTSMD: Mode Selection for UxRTS Pin bit 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode Unimplemented: Read as `0' UEN<1:0>: UARTx Enable bits 11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins controlled by port latches WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit 1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled LPBACK: UARTx Loopback Mode Select bit 1 = Enable Loopback mode 0 = Loopback mode is disabled ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character - requires reception of a Sync field (55h); cleared in hardware upon completion 0 = Baud rate measurement disabled or completed RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is `0' 0 = UxRX Idle state is `1' If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. This feature is only available for the 16x BRG mode (BRGH = 0).
bit 14 bit 13
bit 12
bit 11
bit 10 bit 9-8
bit 7
bit 6
bit 5
bit 4
Note 1: 2:
DS39940D-page 192
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 17-1:
bit 3
UxMODE: UARTx MODE REGISTER (CONTINUED)
BRGH: High Baud Rate Enable bit 1 = High-Speed mode (four BRG clock cycles per bit) 0 = Standard mode (16 BRG clock cycles per bit) PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information. This feature is only available for the 16x BRG mode (BRGH = 0).
bit 2-1
bit 0
Note 1: 2:
2010 Microchip Technology Inc.
DS39940D-page 193
PIC24FJ64GB004 FAMILY
REGISTER 17-2:
R/W-0 UTXISEL1 bit 15 R/W-0 URXISEL1 bit 7 Legend: R = Readable bit -n = Value at POR bit 15,13 C = Clearable bit W = Writable bit `1' = Bit is set HC = Hardware Clearable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 URXISEL0 R/W-0 ADDEN R-1 RIDLE R-0 PERR R-0 FERR R/C-0 OERR R-0 URXDA bit 0
UxSTA: UARTx STATUS AND CONTROL REGISTER
R/W-0 UTXISEL0 U-0 -- R/W-0, HC UTXBRK R/W-0 UTXEN(2) R-0 UTXBF R-1 TRMT bit 8
R/W-0 UTXINV(1)
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) UTXINV: IrDA(R) Encoder Transmit Polarity Inversion bit(1) IREN = 0: 1 = UxTX Idle `0' 0 = UxTX Idle `1' IREN = 1: 1 = UxTX Idle `1' 0 = UxTX Idle `0' Unimplemented: Read as `0' UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission - Start bit, followed by twelve `0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed UTXEN: Transmit Enable bit(2) 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and the buffer is reset; UxTX pin controlled by port UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full; at least one more character can be written TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1). If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 14
bit 12 bit 11
bit 10
bit 9
bit 8
bit 7-6
Note 1: 2:
DS39940D-page 194
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 17-2:
bit 5
UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 0 transition) will reset the receiver buffer and the RSR to the empty state URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1). If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1: 2:
2010 Microchip Technology Inc.
DS39940D-page 195
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 196
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", "Section 27. USB On-The-Go (OTG)" (DS39721). The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and buffer descriptors are used for the transmission and reception of data. In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. Rx (Receive) will be used to describe transfers that move data from the USB to the microcontroller, and Tx (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 18-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.
Note:
PIC24FJ64GB004 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act either as a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP). For more details on OTG operation, refer to the "On-The-Go Supplement to the USB 2.0 Specification", published by the USB-IF. For more information on USB operation, refer to the "Universal Serial Bus Specification", v2.0. The USB OTG module offers these features: * USB functionality in Device and Host modes, and OTG capabilities for application-controlled mode switching * 0.25% Accuracy using Internal Oscillator - No External Crystal Required * Software-selectable module speeds of full speed (12 Mbps) or low speed (1.5 Mbps, available in Host mode only) * Support for all four USB transfer types: control, interrupt, bulk and isochronous * 16 bidirectional endpoints for a total of 32 unique endpoints * DMA interface for data RAM access * Queues up to sixteen unique endpoint transfers without servicing * Integrated on-chip USB transceiver, with support for off-chip transceivers via a digital interface * Integrated VBUS generation with on-chip comparators and boost generation, and support of external VBUS comparators and regulators through a digital interface * Configurations for on-chip bus pull-up and pull-down resistors A simplified block diagram of the USB OTG module is shown in Figure 18-1.
TABLE 18-1:
CONTROLLER-CENTRIC DATA DIRECTION FOR USB HOST OR TARGET
Direction Rx OUT or SETUP IN Tx IN OUT or SETUP
USB Mode Device Host
This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol. Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com/usb for the latest firmware and driver support.
2010 Microchip Technology Inc.
DS39940D-page 197
PIC24FJ64GB004 FAMILY
FIGURE 18-1: USB OTG MODULE BLOCK DIAGRAM
Full-Speed Pull-up Host Pull-down
48 MHz USB Clock
D+(1)
Transceiver VUSB D(1)
Transceiver Power 3.3V
Registers and Control Interface
Host Pull-down
USBID(1) VMIO(1) VPIO(1) DMH(1) DPH(1) DMLN(1) DPLN(1) RCV(1) USBOEN(1) VBUSON(1)
External Transceiver Interface
USB SIE
System RAM
SRP Charge
VBUS
USB Voltage Comparators
SRP Discharge
VCMPST1(1) VCMPST2(1) VBUSST(1) VCPCON(1) VBUS Boost Assist
Note 1:
Pins are multiplexed with digital I/O and other device features.
DS39940D-page 198
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.1
18.1.1 18.1.1.1
Hardware Configuration
DEVICE MODE D+ Pull-up Resistor
To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose. The application should never source any current onto the 5V VBUS pin of the USB cable. The Dual Power option with Self-Power Dominance (Figure 18-5) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual Power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.
PIC24FJ64GB004 family devices have a built-in 1.5 k resistor on the D+ line that is available when the microcontroller in operating in device mode. This is used to signal an external Host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>). Alternatively, an external resistor may be used on D+, as shown in Figure 18-2.
FIGURE 18-2:
EXTERNAL PULL-UP FOR FULL-SPEED DEVICE MODE
Host Controller/HUB
FIGURE 18-3:
BUS POWER ONLY
Attach Sense VBUS VDD
0-100 k VBUS ~5V 3.3V Low IQ Regulator
PIC(R) MCU
VUSB VUSB VSS
1.5 k D+ D-
FIGURE 18-4:
VBUS ~5V
SELF-POWER ONLY
0-100 k Attach Sense VBUS VDD
18.1.1.2
Power Modes
Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are: * Bus Power Only * Self-Power Only * Dual Power with Self-Power Dominance Bus Power Only mode (Figure 18-3) is effectively the simplest method. All power for the application is drawn from the USB. To meet the inrush current requirements of the USB 2.0 Specification, the total effective capacitance appearing across VBUS and ground must be no more than 10 F. In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current. In Self-Power Only mode (Figure 18-4), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.
2010 Microchip Technology Inc.
VSELF ~3.3V
VUSB 100 k VSS
FIGURE 18-5:
DUAL POWER EXAMPLE
0-100 k 3.3V Attach Sense VBUS VDD
VBUS ~5V
Low IQ Regulator 100 k
VUSB VSS
VSELF ~3.3V
DS39940D-page 199
PIC24FJ64GB004 FAMILY
18.1.2 18.1.2.1 HOST AND OTG MODES D+ and D- Pull-down Resistors
microcontroller is running below VBUS and is not able to source sufficient current, a separate power supply must be provided. When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.
PIC24FJ64GB004 family devices have built-in 15 k pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).
18.1.2.2
Power Configurations
In Host mode, as well as Host mode in On-the-Go operation, the USB 2.0 specification requires that the Host application supply power on VBUS. Since the
FIGURE 18-6:
HOST INTERFACE EXAMPLE
+5V Thermal Fuse Polymer PTC 0.1 F, 3.3V A/D pin 2 k VBUS D+ DID VSS +3.3V +3.3V PIC(R) Microcontroller VDD VUSB
150 F Micro A/B Connector VBUS D+ DID GND
2 k
FIGURE 18-7:
OTG INTERFACE EXAMPLE
VDD MCP1253 GND C+ 1 F CVOUT VIN SELECT SHND PGOOD 10 F I/O I/O PIC(R) Microcontroller
Micro A/B Connector 4.7 F VBUS D+ DID GND
40 k VBUS D+ DID VSS
DS39940D-page 200
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.1.2.3 VBUS Voltage Generation with External Devices 18.1.3 USING AN EXTERNAL INTERFACE
When operating as a USB host, either as an A-device in an OTG configuration or as an embedded host, VBUS must be supplied to the attached device. PIC24FJ64GB004 family devices have an internal VBUS boost assist to help generate the required 5V VBUS from the available voltages on the board. This is comprised of a simple PWM output to control a switch-mode power supply, and built-in comparators to monitor output voltage and limit current. To enable voltage generation: 1. Verify that the USB module is powered (U1PWRC<0> = 1) and that the VBUS discharge is disabled (U1OTGCON<0> = 0). Set the PWM period (U1PWMRRS<7:0>) and duty cycle (U1PWMRRS<15:8>) as required. Select the required polarity of the output signal based on the configuration of the external circuit with the PWMPOL bit (U1PWMCON<9>). Select the desired target voltage using the VBUSCHG bit (U1OTGCON<1>). Enable the PWM counter by setting the CNTEN bit to `1' (U1PWMCON<8>). Enable the PWM module by setting the PWMEN bit to `1' (U1PWMCON<15>). generation circuit Enable the VBUS (U1OTGCON<3> = 1). Note: This section describes the general process for VBUS voltage generation and control. Please refer to the "PIC24F Family Reference Manual" for additional examples. Some applications may require the USB interface to be isolated from the rest of the system. PIC24FJ64GB004 family devices include a complete interface to communicate with and control an external USB transceiver, including the control of data line pull-ups and pull-downs. The VBUS voltage generation control circuit can also be configured for different VBUS generation topologies. Please refer to the "PIC24F Family Reference Manual", "Section 27. USB On-The-Go (OTG)" for information on using the external interface.
18.1.4
CALCULATING TRANSCEIVER POWER REQUIREMENTS
2. 3.
4. 5. 6. 7.
The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 18-1 can help estimate how much current actually may be required in Full-speed applications. Please refer to the "PIC24F Family Reference Manual", "Section 27. USB On-The-Go (OTG)" for a complete discussion on transceiver power consumption.
EQUATION 18-1:
ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION
IXCVR = (40 mA * VUSB * PZERO * PIN * LCABLE) + IPULLUP (3.3V * 5m)
Legend: VUSB - Voltage applied to the VUSB pin in volts (3.0V to 3.6V). PZERO - Percentage (in decimal) of the IN traffic bits sent by the PIC(R) microcontroller that are a value of `0'. PIN - Percentage (in decimal) of total bus bandwidth that is used for IN traffic. LCABLE - Length (in meters) of the USB cable. The USB 2.0 Specification requires that full-speed applications use cables no longer than 5m. IPULLUP - Current which the nominal, 1.5 k pull-up resistor (when enabled) must supply to the USB cable.
2010 Microchip Technology Inc.
DS39940D-page 201
PIC24FJ64GB004 FAMILY
18.2 USB Buffer Descriptors and the BDT
Depending on the endpoint buffering configuration used, there are up to 64 sets of buffer descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the USB specification mandates that every device must have Endpoint 0 with both input and output for initial setup. Endpoint mapping in the BDT is dependent on three variables: * Endpoint number (0 to 15) * Endpoint direction (Rx or Tx) * Ping-pong settings (U1CNFG1<1:0>) Figure 18-8 illustrates how these variables are used to map endpoints in the BDT. In Host mode, only Endpoint 0 buffer descriptors are used. All transfers utilize the Endpoint 0 buffer descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT3:ENDPT0 in the USB status register (U1STAT<7:4>). For transmitted packet, the attached device's destination endpoint is indicated by the value written to the Token register (U1TOK).
Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations. The BDT can be located in any available, 512-byte aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT, and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location. The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two, 16-bit "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.
FIGURE 18-8:
PPB<1:0> = 00 No Ping-Pong Buffers Total BDT Space: 128 bytes
BDT MAPPING FOR ENDPOINT BUFFERING MODES
PPB<1:0> = 01 Ping-Pong Buffer on EP0 OUT Total BDT Space: 132 bytes
EP0 Rx Even Descriptor EP0 Rx Odd Descriptor EP0 Tx Descriptor EP1 Rx Descriptor EP1 Tx Descriptor EP15 Tx Descriptor EP15 Tx Descriptor
PPB<1:0>0 = 10 Ping-Pong Buffers on all EPs Total BDT Space: 256 bytes
EP0 Rx Even Descriptor EP0 Rx Odd Descriptor EP0 Tx Even Descriptor EP0 Tx Odd Descriptor EP1 Rx Even Descriptor EP1 Rx Odd Descriptor EP1 Tx Even Descriptor EP1 Tx Odd Descriptor
PPB<1:0> = 11 Ping-Pong Buffers on all other EPs except EP0 Total BDT Space: 248 bytes
EP0 Rx Descriptor EP0 Tx Descriptor EP1 Rx Even Descriptor EP1 Rx Odd Descriptor EP1 Tx Even Descriptor EP1 Tx Odd Descriptor
EP0 Rx Descriptor EP0 Tx Descriptor EP1 Rx Descriptor EP1 Tx Descriptor
EP15 Tx Odd Descriptor
EP15 Tx Odd Descriptor
Note:
Memory area not shown to scale.
DS39940D-page 202
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 18-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This theoretically means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented. The buffer descriptors have a different meaning based on the source of the register update. Register 18-1 and Register 18-2 show the differences in BDnSTAT depending on its current "ownership". When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.
18.2.1
BUFFER OWNERSHIP
Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT. When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.
18.2.2
DMA INTERFACE
The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space properly mapped for the access by the module.
TABLE 18-2:
ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT BUFFERING MODES
BDs Assigned to Endpoint Mode 3 (Ping-Pong on all other EPs, except EP0) Out 0 2 (E), 3 (O) 6 (E), 7 (O) 10 (E), 11 (O) In 1 4 (E), 5 (O) 8 (E), 9 (O) 12 (E), 13 (O)
Endpoint
Mode 0 (No Ping-Pong) Out In 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Mode 1 (Ping-Pong on EP0 OUT) Out 0 (E), 1 (O) 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 In 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Mode 2 (Ping-Pong on all EPs) Out 0 (E), 1 (O) 4 (E), 5 (O) 8 (E), 9 (O) 12 (E), 13 (O) 16 (E), 17 (O) 20 (E), 21 (O) 24 (E), 25 (O) 28 (E), 29 (O) 32 (E), 33 (O) 36 (E), 37 (O) 40 (E), 41 (O) 44 (E), 45 (O) 48 (E), 49 (O) 52 (E), 53 (O) 56 (E), 57 (O) 60 (E), 61 (O) In 2 (E), 3 (O) 6 (E), 7 (O) 10 (E), 11 (O) 14 (E), 15 (O) 18 (E), 19 (O) 22 (E), 23 (O) 26 (E), 27 (O) 34 (E), 35 (O) 38 (E), 39 (O) 42 (E), 43 (O) 46 (E), 47 (O) 50 (E), 51 (O) 54 (E), 55 (O) 58 (E), 59 (O) 62 (E), 63 (O)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Legend:
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
14 (E), 15 (O) 16 (E), 17 (O) 18 (E), 19 (O) 20 (E), 21 (O) 22 (E), 23 (O) 24 (E), 25 (O) 30 (E), 31 (O) 32 (E), 33 (O) 34 (E), 35 (O) 36 (E), 37 (O) 38 (E), 39 (O) 40 (E), 41 (O) 42 (E), 43 (O) 44 (E), 45 (O) 46 (E), 47 (O) 48 (E), 49 (O) 50 (E), 51 (O) 52 (E), 53 (O) 54 (E), 55 (O) 56 (E), 57 (O) 58 (E), 59 (O) 60 (E), 61 (O)
30 (E), 31 (O) 26 (E), 27 (O) 28 (E), 29 (O)
(E) = Even transaction buffer, (O) = Odd transaction buffer
2010 Microchip Technology Inc.
DS39940D-page 203
PIC24FJ64GB004 FAMILY
REGISTER 18-1:
R/W-x UOWN bit 15 R/W-x BC7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-x BC6 R/W-x BC5 R/W-x BC4 R/W-x BC3 R/W-x BC2 R/W-x BC1
BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)
R/W-x PID3 R/W-x PID2 R/W-x PID1 R/W-x PID0 R/W-x BC9 R/W-x BC8 bit 8 R/W-x BC0 bit 0 DTS
R/W-x
UOWN: USB Own bit 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer DTS: Data Toggle Packet bit 1 = Data 1 packet 0 = Data 0 packet PID<3:0>: Packet Identifier bits (written by the USB module) In Device mode: Represents the PID of the received token during the last transfer. In Host mode: Represents the last returned PID, or the transfer status indicator. BC<9:0>: Byte Count This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
bit 14
bit 13-10
bit 9-0
DS39940D-page 204
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-2:
R/W-x UOWN bit 15 R/W-x BC7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-x BC6 R/W-x BC5 R/W-x BC4 R/W-x BC3 R/W-x BC2 R/W-x BC1
BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)
R/W-x 0 R/W-x 0 R/W-x DTSEN R/W-x BSTALL R/W-x BC9 R/W-x BC8 bit 8 R/W-x BC0 bit 0
R/W-x DTS(1)
UOWN: USB Own bit 0 = The microcontroller core owns the BD and its corresponding buffer. The USB module ignores all other fields in the BD. DTS: Data Toggle Packet bit(1) 1 = Data 1 packet 0 = Data 0 packet Reserved Function: Maintain as `0' DTSEN: Data Toggle Synchronization Enable bit 1 = Data toggle synchronization is enabled; data packets with incorrect sync value will be ignored 0 = No data toggle synchronization is performed BSTALL: Buffer Stall Enable bit 1 = Buffer STALL enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL disabled BC<9:0>: Byte Count bits This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received. This bit is ignored unless DTSEN = 1.
bit 14
bit 13-12 bit 11
bit 10
bit 9-0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 205
PIC24FJ64GB004 FAMILY
18.3 USB Interrupts
The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector. Figure 18-9 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level. Interrupts may be used to trap routine events in a USB transaction. Figure 18-10 provides some common events within a USB frame and their corresponding interrupts.
FIGURE 18-9:
USB OTG INTERRUPT FUNNEL
Top Level (USB Status) Interrupts STALLIF STALLIE ATTACHIF ATTACHIE RESUMEIF RESUMEIE IDLEIF IDLEIE TRNIF TRNIE
Second Level (USB Error) Interrupts BTSEF BTSEE DMAEF DMAEE BTOEF BTOEE DFN8EF DFN8EE CRC16EF CRC16EE CRC5EF (EOFEF) CRC5EE (EOFEE) PIDEF PIDEE SOFIF SOFIE URSTIF (DETACHIF) URSTIE (DETACHIE) Set USB1IF
(UERRIF) UERRIE IDIF IDIE T1MSECIF TIMSECIE LSTATEIF LSTATEIE ACTVIF ACTVIE SESVDIF SESVDIE SESENDIF SESENDIE VBUSVDIF VBUSVDIE
Top Level (USB OTG) Interrupts
DS39940D-page 206
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.3.1 CLEARING USB OTG INTERRUPTS
Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a `1' to their locations (i.e., performing a MOV type instruction). Writing a `0' to a flag bit (i.e., a BCLR instruction) has no effect. Note: Throughout this data sheet, a bit that can only be cleared by writing a `1' to its location is referred to as "Write `1' to clear". In register descriptions, this function is indicated by the descriptor "K".
FIGURE 18-10:
EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS
From Host From Host Data To Host ACK Set TRNIF SETUP Token
USB Reset URSTIF
From Host Start-of-Frame (SOF) SOFIF IN Token
To Host Data
From Host ACK Set TRNIF
From Host OUT Token
From Host Empty Data Transaction
To Host ACK Set TRNIF Transaction Complete
RESET Differential Data
SOF
SETUP
DATA
STATUS
SOF
Control Transfer(1) 1 ms Frame
Note 1:
The control transfer shown here is only an example showing events that can occur for every transaction. Typical control transfers will spread across multiple frames.
18.4
Device Mode Operation
5. 6. 7.
The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.
18.4.1
1.
ENABLING DEVICE MODE
8. 9.
2. 3. 4.
Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit PPBRST (U1CON<1>). Disable all interrupts (U1IE and U1EIE = 00h). Clear any existing interrupt flags by writing FFh to U1IR and U1EIR. Verify that VBUS is present (non OTG devices only).
Enable the USB module by setting the USBEN bit (U1CON<0>). Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation. Enable the endpoint zero buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1). Power up the USB module by setting the USBPWR bit (U1PWRC<0>). Enable the D+ pull-up resistor to signal an attach by setting DPPULUP (U1OTGCON<7>).
2010 Microchip Technology Inc.
DS39940D-page 207
PIC24FJ64GB004 FAMILY
18.4.2
1. 2. 3.
RECEIVING AN IN TOKEN IN DEVICE MODE
18.5
Host Mode Operation
4.
Attach to a USB host and enumerate as described in Chapter 9 of the USB 2.0 specification. Create a data buffer, and populate it with the data to send to the host. In the appropriate (EVEN or ODD) Tx BD for the desired endpoint: a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer. b) Set up the address register (BDnADR) with the starting address of the data buffer. c) Set the UOWN bit of the status register to `1'. When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).
The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 control register (U1EP0) and buffer descriptors.
18.5.1
1.
ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE
18.4.3
1. 2. 3.
RECEIVING AN OUT TOKEN IN DEVICE MODE
4.
Attach to a USB host and enumerate as described in Chapter 9 of the USB 2.0 specification. Create a data buffer with the amount of data you are expecting from the host. In the appropriate (EVEN or ODD) Tx BD for the desired endpoint: a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer. b) Set up the address register (BDnADR) with the starting address of the data buffer. c) Set the UOWN bit of the status register to `1'. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).
Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available. 2. Enable the D+ and D- pull-down resistors by setting DPPULDWN and DMPULDWN (U1OTGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing DPPULUP and DMPULUP (U1OTGCON<7:6>). 3. At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame packet generation. 4. Enable the device attached interrupt by setting ATTACHIE (U1IE<6>). 5. Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from `0' to `1' (SE0 to J state). After it occurs, wait 100 ms for the device power to stabilize. 6. Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is `0', the connecting device is low speed. If the connecting device is low speed, set the low LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation. 7. Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST. 8. To keep the connected device from going into suspend, enable SOF packet generation to keep by setting the SOFEN bit. 9. Wait 10 ms for the device to recover from Reset. 10. Perform enumeration as described by Chapter 9 of the USB 2.0 specification.
DS39940D-page 208
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE
8. Initialize the current (EVEN or ODD) Rx or Tx (Rx for IN, Tx for OUT) EP0 BD to transfer the data: a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1, and sets the byte count to the length of the data buffer (64 or 40h, in this case). b) Set BD0ADR to the starting address of the data buffer. 9. Write the token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a transfer done interrupt is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction as referenced in Chapter 9 of the USB specification. If more data needs to be transferred, return to step 8. 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet. 11. Initialize the current (even or odd) Tx EP0 BD to transfer the status data: a) Set the BDT buffer address field to the start address of the data buffer b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0, and set byte count to 0). 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device, and a transfer done interrupt is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction as described in Chapter 9 of the USB specification. Note: Only one control transaction can be performed per frame.
1.
2.
3.
4.
5.
6.
7.
Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device. Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN, and EPHSHK bits). Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the USB 2.0 specification for information on the device framework command set. Initialize the buffer descriptor (BD) for the current (EVEN or ODD) Tx EP0, to transfer the eight bytes of command data for a device framework command (i.e., a GET DEVICE DESCRIPTOR): a) Set the BD data buffer address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command. b) Write 8008h to BD0STAT (this sets the UOWN bit, and sets a byte count of 8). Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a transfer done interrupt is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction as referenced in Chapter 9 of the USB specification. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.
2010 Microchip Technology Inc.
DS39940D-page 209
PIC24FJ64GB004 FAMILY
18.5.3
1.
SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE
18.6
18.6.1
OTG Operation
SESSION REQUEST PROTOCOL (SRP)
2.
3. 4. 5.
6.
7.
Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" and Section 18.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device. To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD bit (U1EP0<7>). If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>). Set up the BD for the current (EVEN or ODD) Tx EP0 to transfer up to 64 bytes. Set the USB device address of the target device in the address register (U1ADDR<6:0>). Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor, and the transfer has completed. If the retry disable bit is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 s), then the target has detached (U1IR<0> is set). Once the transfer done interrupt occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to step 2. Note: USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.
An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U1OTGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session. An OTG A-device or Embedded Host may re-power the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device re-power the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP). Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions: 1. VBUS supply is below the Session Valid voltage, and 2. Both D+ and D- have been low for at least 2 ms. The B-device will be notified of condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for condition 2. Note: When the A-device powers down the VBUS supply, the B-device must disconnect its pull-up resistor from power. If the device is self-powered, it can do this by clearing DPPULUP (U1OTGCON<7>) and DMPULUP (U1OTGCON<6>).
The B-device may aid in achieving condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>). After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U1OTGCON<7>). The data line should be held high for 5 to 10 ms.
DS39940D-page 210
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>), or by setting the I/O port controlling the external power source. The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must re-connect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP). The A-device must complete the SRP by driving USB Reset signaling. DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as Host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP. If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus. When the B-device has finished in its role as Host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation, and drives Reset signaling.
18.6.2
HOST NEGOTIATION PROTOCOL (HNP)
In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP). HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the On-The-Go Supplement to the USB 2.0 Specification for more information regarding HNP. HNP may only be initiated at full speed. After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in Suspend state, by simply indicating a disconnect. This can be done in software by clearing
18.6.3
EXTERNAL VBUS COMPARATORS
The external VBUS comparator option is enabled by setting the UVCMPDIS bit (U1CNFG2<1>). This disables the internal VBUS comparators, removing the need to attach VBUS to the microcontroller's VBUS pin. The external comparator interface uses either the VCMPST1 and VCMPST2 pins, or the VBUSVLD, SESSVLD and SESSEND pins, based upon the setting of the UVCMPSEL bit (U1CNFG2<5>). These pins are digital inputs and should be set in the following patterns (see Table 18-3), based on the current level of the VBUS voltage.
TABLE 18-3:
VCMPST1 0 1 0 1
EXTERNAL VBUS COMPARATOR STATES
VCMPST2 0 0 1 1 VBUS < VB_SESS_END VB_SESS_END < VBUS < VA_SESS_VLD VA_SESS_VLD < VBUS < VA_VBUS_VLD VBUS > VVBUS_VLD Bus Condition
If UVCMPSEL = 0
If UVCMPSEL = 1 VBUSVLD 0 0 0 1 SESSVLD 0 0 1 1 SESSEND 1 0 0 0 VBUS < VB_SESS_END VB_SESS_END < VBUS < VA_SESS_VLD VA_SESS_VLD < VBUS < VA_VBUS_VLD VBUS > VVBUS_VLD Bus Condition
2010 Microchip Technology Inc.
DS39940D-page 211
PIC24FJ64GB004 FAMILY
18.7 USB OTG Module Registers
There are a total of 37 memory mapped registers associated with the USB OTG module. They can be divided into four general categories: * * * * USB OTG Module Control (12) USB Interrupt (7) USB Endpoint Management (16) USB VBUS Power Control (2) Registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only: * U1BDTP1: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as `0' for boundary alignment * U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame * U1PWMRRS: Contains the 8-bit value for PWM duty cycle (bits<15:8>) and PWM period (bits<7:0>) for the VBUS boost assist PWM module.
This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 18-1 and Register 18-2, are shown separately in Section 18.2 "USB Buffer Descriptors and the BDT". With the exception U1PWMCON and U1PWMRRS, all USB OTG registers are implemented in the Least Significant Byte of the register. Bits in the upper byte are unimplemented, and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.
DS39940D-page 212
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.7.1 USB OTG MODULE CONTROL REGISTERS U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 U-0 -- R-0, HSC LSTATE U-0 -- R-0, HSC SESVD R-0, HSC SESEND U-0 -- R-0, HSC VBUSVD bit 0 U = Unimplemented bit, read as `0' W = Writable bit `1' = Bit is set HSC = Hardware Settable/Clearable bit `0' = Bit is cleared x = Bit is unknown
REGISTER 18-3:
U-0 -- bit 15 R-0, HSC ID bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7
Unimplemented: Read as `0' ID: ID Pin State Indicator bit 1 = No plug is attached, or a type B cable has been plugged into the USB receptacle 0 = A type A plug has been plugged into the USB receptacle Unimplemented: Read as `0' LSTATE: Line State Stable Indicator bit 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has NOT been stable for the previous 1 ms Unimplemented: Read as `0' SESVD: Session Valid Indicator bit 1 = The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or B-device 0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device SESEND: B-Session End Indicator bit 1 = The VBUS voltage is below VB_SESS_END (as defined in the USB OTG Specification) on the B-device 0 = The VBUS voltage is above VB_SESS_END on the B-device Unimplemented: Read as `0' VBUSVD: A-VBUS Valid Indicator bit 1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the A-device 0 = The VBUS voltage is below VA_VBUS_VLD on the A-device
bit 6 bit 5
bit 4 bit 3
bit 2
bit 1 bit 0
2010 Microchip Technology Inc.
DS39940D-page 213
PIC24FJ64GB004 FAMILY
REGISTER 18-4:
U-0 -- bit 15 R/W-0 DPPULUP bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 DMPULUP R/W-0 R/W-0 R/W-0 VBUSON(1) R/W-0 OTGEN(1) R/W-0 U-0 --
U1OTGCON: USB ON-THE-GO CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 bit 0
DPPULDWN(1) DMPULDWN(1)
VBUSCHG(1) VBUSDIS(1)
Unimplemented: Read as `0' DPPULUP: D+ Pull-Up Enable bit 1 = D+ data line pull-up resistor is enabled 0 = D+ data line pull-up resistor is disabled DMPULUP: D- Pull-Up Enable bit 1 = D- data line pull-up resistor is enabled 0 = D- data line pull-up resistor is disabled DPPULDWN: D+ Pull-Down Enable bit(1) 1 = D+ data line pull-down resistor is enabled 0 = D+ data line pull-down resistor is disabled DMPULDWN: D- Pull-Down Enable bit(1) 1 = D- data line pull-down resistor is enabled 0 = D- data line pull-down resistor is disabled VBUSON: VBUS Power-on bit(1) 1 = VBUS line is powered 0 = VBUS line is not powered OTGEN: OTG Features Enable bit(1) 1 = USB OTG is enabled; all D+/D- pull-ups and pull-downs bits are enabled 0 = USB OTG is disabled; D+/D- pull-ups and pull-downs are controlled in hardware by the settings of the HOSTEN and USBEN bits (U1CON<3,0>) VBUSCHG: VBUS Charge Select bit(1) 1 = VBUS line is set to charge to 3.3V 0 = VBUS line is set to charge to 5V VBUSDIS: VBUS Discharge Enable bit(1) 1 = VBUS line is discharged through a resistor 0 = VBUS line is not discharged These bits are only used in Host mode; do not use in Device mode.
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1:
DS39940D-page 214
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-5:
U-0 -- bit 15 R/W-0, HS UACTPND bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 HS = Hardware Settable bit W = Writable bit `1' = Bit is set HC = Hardware Clearable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 USLPGRD U-0 -- U-0 -- R/W-0, HC USUSPND
U1PWRC: USB POWER CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 USBPWR bit 0
Unimplemented: Read as `0' UACTPND: USB Activity Pending bit 1 = Module should not be suspended at the moment (requires USLPGRD bit to be set) 0 = Module may be suspended or powered down Unimplemented: Read as `0' USLPGRD: Sleep/Suspend Guard bit 1 = Indicate to the USB module that it is about to be suspended or powered down 0 = No suspend Unimplemented: Read as `0' USUSPND: USB Suspend Mode Enable bit 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation USBPWR: USB Operation Enable bit 1 = USB OTG module is enabled 0 = USB OTG module is disabled(1) Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.
bit 6-5 bit 4
bit 3-2 bit 1
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 215
PIC24FJ64GB004 FAMILY
REGISTER 18-6:
U-0 -- bit 15 R-0, HSC ENDPT3 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7-4 U = Unimplemented bit, read as `0' W = Writable bit `1' = Bit is set HSC = Hardware Settable/Clearable bit `0' = Bit is cleared x = Bit is unknown R-0, HSC ENDPT2 R-0, HSC ENDPT1 R-0, HSC ENDPT0 R-0, HSC DIR R-0, HSC PPBI(1) U-0 -- U-0 -- bit 0
U1STAT: USB STATUS REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
Unimplemented: Read as `0' ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer). 1111 = Endpoint 15 1110 = Endpoint 14 .... 0001 = Endpoint 1 0000 = Endpoint 0 DIR: Last BD Direction Indicator bit 1 = The last transaction was a transmit transfer (Tx) 0 = The last transaction was a receive transfer (Rx) PPBI: Ping-Pong BD Pointer Indicator bit(1) 1 = The last transaction was to the ODD BD bank 0 = The last transaction was to the EVEN BD bank Unimplemented: Read as `0' This bit is only valid for endpoints with available EVEN and ODD BD registers.
bit 3
bit 2
bit 1-0 Note 1:
DS39940D-page 216
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-7:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-7 bit 6 U = Unimplemented bit, read as `0' W = Writable bit `1' = Bit is set HSC = Hardware Settable/Clearable bit `0' = Bit is cleared x = Bit is unknown R-x, HSC SE0 R/W-0 PKTDIS U-0 -- R/W-0 HOSTEN R/W-0 RESUME R/W-0 PPBRST
U1CON: USB CONTROL REGISTER (DEVICE MODE)
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 USBEN bit 0
Unimplemented: Read as `0' SE0: Live Single-Ended Zero Flag bit 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected PKTDIS: Packet Transfer Disable bit 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled Unimplemented: Read as `0' HOSTEN: Host Mode Enable bit 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled RESUME: Resume Signaling Enable bit 1 = Resume signaling is activated 0 = Resume signaling is disabled PPBRST: Ping-Pong Buffers Reset bit 1 = Reset all Ping-Pong Buffer Pointers to the EVEN BD banks 0 = Ping-Pong Buffer Pointers are not reset USBEN: USB Module Enable bit 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached)
bit 5
bit 4 bit 3
bit 2
bit 1
bit 0
2010 Microchip Technology Inc.
DS39940D-page 217
PIC24FJ64GB004 FAMILY
REGISTER 18-8:
U-0 -- bit 15 R-x, HSC JSTATE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 U = Unimplemented bit, read as `0' W = Writable bit `1' = Bit is set HSC = Hardware Settable/Clearable bit `0' = Bit is cleared x = Bit is unknown R-x, HSC SE0 R/W-0 TOKBUSY R/W-0 USBRST R/W-0 HOSTEN R/W-0 RESUME R/W-0 PPBRST
U1CON: USB CONTROL REGISTER (HOST MODE ONLY)
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 SOFEN bit 0
Unimplemented: Read as `0' JSTATE: Live Differential Receiver J State Flag bit 1 = J state (differential `0' in low speed, differential `1' in full speed) is detected on the USB 0 = No J state was detected SE0: Live Single-Ended Zero Flag bit 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected TOKBUSY: Token Busy Status bit 1 = Token is being executed by the USB module in On-The-Go state 0 = No token is being executed USBRST: Module Reset bit 1 = USB Reset has been generated; for software Reset, application must set this bit for 50 ms, then clear it 0 = USB Reset is terminated HOSTEN: Host Mode Enable bit 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled RESUME: Resume Signaling Enable bit 1 = Resume signaling activated; software must set bit for 10 ms and then clear to enable remote wake-up 0 = Resume signaling disabled PPBRST: Ping-Pong Buffers Reset bit 1 = Reset all Ping-Pong Buffer Pointers to the EVEN BD banks 0 = Ping-Pong Buffer Pointers are not reset SOFEN: Start-of-Frame Enable bit 1 = Start-of-Frame token is sent every one 1 millisecond 0 = Start-of-Frame token is disabled
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
DS39940D-page 218
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-9:
U-0 -- bit 15 R/W-0 LSPDEN(1) bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 ADDR6 R/W-0 ADDR5 R/W-0 ADDR4 R/W-0 ADDR3 R/W-0 ADDR2 R/W-0 ADDR1
U1ADDR: USB ADDRESS REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 ADDR0 bit 0
Unimplemented: Read as `0' LSPDEN: Low-Speed Enable Indicator bit(1) 1 = USB module operates at low speed 0 = USB module operates at full speed ADDR<6:0>: USB Device Address bits Host mode only. In Device mode, this bit is unimplemented and read as `0'.
bit 6-0 Note 1:
REGISTER 18-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)
U-0 -- bit 15 R/W-0 PID3 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7-4 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 PID2 R/W-0 PID1 R/W-0 PID0 R/W-0 EP3 R/W-0 EP2 R/W-0 EP1 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 EP0 bit 0
Unimplemented: Read as `0' PID<3:0>: Token Type Identifier bits 1101 = SETUP (TX) token type transaction(1) 1001 = IN (RX) token type transaction(1) 0001 = OUT (TX) token type transaction(1) EP<3:0>: Token Command Endpoint Address bits This value must specify a valid endpoint on the attached device. All other combinations are reserved and are not to be used.
bit 3-0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 219
PIC24FJ64GB004 FAMILY
REGISTER 18-11:
U-0 -- bit 15 R/W-0 CNT7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8
R/W-0 CNT6
R/W-0 CNT5
R/W-0 CNT4
R/W-0 CNT3
R/W-0 CNT2
R/W-0 CNT1
R/W-0 CNT0 bit 0
Unimplemented: Read as `0' CNT<7:0>: Start-of-Frame Size bits; Value represents 10 + (packet size of n bytes). For example: 0100 1010 = 64-byte packet 0010 1010 = 32-byte packet 0001 0010 = 8-byte packet
REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1
U-0 -- bit 15 R/W-0 UTEYE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 R/W-0 UOEMON(1) U-0 -- R/W-0 USBSIDL U-0 -- U-0 -- R/W-0 PPB1 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 PPB0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled 0 = Eye pattern test is disabled UOEMON: USB OE Monitor Enable bit(1) 1 = OE signal is active; it indicates the intervals during which the D+/D- lines are driving 0 = OE signal is inactive Unimplemented: Read as `0' USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.
bit 6
bit 5 bit 4
bit 3-2 Note 1:
DS39940D-page 220
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1 (CONTINUED)
bit 1-0 PPB<1:0>: Ping-Pong Buffers Configuration bit 11 = EVEN/ODD ping-pong buffers are enabled for Endpoints 1 to 15 10 = EVEN/ODD ping-pong buffers are enabled for all endpoints 01 = EVEN/ODD ping-pong buffers are enabled for OUT Endpoint 0 00 = EVEN/ODD ping-pong are buffers are disabled This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.
Note 1:
REGISTER 18-13: U1CNFG2: USB CONFIGURATION REGISTER 2
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-6 bit 5 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- R/W-0 UVCMPSEL R/W-0 PUVBUS R/W-0 EXTI2CEN R/W-0 R/W-0 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 UTRDIS(1) bit 0
UVBUSDIS(1) UVCMPDIS(1)
Unimplemented: Read as `0' UVCMPSEL: External Comparator Input Mode Select bit (see Table 18-3) When UVCMPDIS is set: 1 = Use 3 pin input for external comparators 0 = Use 2 pin input for external comparators PUVBUS: VBUS Pull-up Enable bit 1 = Pull-up on VBUS pin is enabled 0 = Pull-up on VBUS pin is disabled EXTI2CEN: I2CTM Interface For External Module Control Enable bit 1 = External module(s) is controlled via I2C interface 0 = External module(s) is controlled via dedicated pins UVBUSDIS: On-Chip 5V Boost Regulator Builder Disable bit(1) 1 = On-chip boost regulator builder is disabled; digital output control interface is enabled 0 = On-chip boost regulator builder is active UVCMPDIS: On-Chip VBUS Comparator Disable bit(1) 1 = On-chip charge VBUS comparator is disabled; digital input status interface is enabled 0 = On-chip charge VBUS comparator is active UTRDIS: On-Chip Transceiver Disable bit(1) 1 = On-chip transceiver is disabled; digital transceiver interface is enabled 0 = On-chip transceiver is active Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 221
PIC24FJ64GB004 FAMILY
18.7.2 USB INTERRUPT REGISTERS REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)
U-0 -- bit 15 R/K-0, HS IDIF bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 U = Unimplemented bit, read as `0' K = Write `1' to clear bit `1' = Bit is set HS = Hardware Settable bit `0' = Bit is cleared x = Bit is unknown R/K-0, HS T1MSECIF R/K-0, HS LSTATEIF R/K-0, HS ACTVIF R/K-0, HS SESVDIF R/K-0, HS SESENDIF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/K-0, HS VBUSVDIF bit 0
Unimplemented: Read as `0' IDIF: ID State Change Indicator bit 1 = Change in ID state is detected 0 = No ID state change T1MSECIF: 1 Millisecond Timer bit 1 = The 1 millisecond timer has expired 0 = The 1 millisecond timer has not expired LSTATEIF: Line State Stable Indicator bit 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time 0 = USB line state has not been stable for 1 ms ACTVIF: Bus Activity Indicator bit 1 = Activity on the D+/D- lines or VBUS is detected 0 = No activity on the D+/D- lines or VBUS is detected SESVDIF: Session Valid Change Indicator bit 1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification)(1) 0 = VBUS has not crossed VA_SESS_END SESENDIF: B-Device VBUS Change Indicator bit 1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification)(1) 0 = VBUS has not crossed VA_SESS_END Unimplemented: Read as `0' VBUSVDIF A-Device VBUS Change Indicator bit 1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification)(1) 0 = No VBUS change on A-device is detected VBUS threshold crossings may be either rising or falling.
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1 bit 0
Note 1:
Note:
Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
DS39940D-page 222
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)
U-0 -- bit 15 R/W-0 IDIE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 T1MSECIE R/W-0 LSTATEIE R/W-0 ACTVIE R/W-0 SESVDIE R/W-0 SESENDIE U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 VBUSVDIE bit 0
Unimplemented: Read as `0' IDIE: ID Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled T1MSECIE: 1 Millisecond Timer Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled LSTATEIE: Line State Stable Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled ACTVIE: Bus Activity Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled SESVDIE: Session Valid Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled SESENDIE: B-Device Session End Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled Unimplemented: Read as `0' VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1 bit 0
2010 Microchip Technology Inc.
DS39940D-page 223
PIC24FJ64GB004 FAMILY
REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)
U-0 -- bit 15 R/K-0, HS STALLIF bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 U = Unimplemented bit, read as `0' K = Write `1' to clear bit `1' = Bit is set HS = Hardware Settable bit `0' = Bit is cleared x = Bit is unknown U-0 -- R/K-0, HS RESUMEIF R/K-0, HS IDLEIF R/K-0, HS TRNIF R/K-0, HS SOFIF R-0 UERRIF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/K-0, HS URSTIF bit 0
Unimplemented: Read as `0' STALLIF: STALL Handshake Interrupt bit 1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent Unimplemented: Read as `0' RESUMEIF: Resume Interrupt bit 1 = A K-state was observed on the D+ or D- pin for 2.5 s (differential `1' for low speed, differential `0' for full speed) 0 = No K-state was observed IDLEIF: Idle Detect Interrupt bit 1 = Idle condition was detected (constant Idle state of 3 ms or more) 0 = No Idle condition was detected TRNIF: Token Processing Complete Interrupt bit 1 = Processing of current token was complete; read U1STAT register for endpoint information 0 = Processing of current token was not complete; clear U1STAT register or load next token from STAT (clearing this bit causes the STAT FIFO to advance) SOFIF: Start-of-Frame Token Interrupt bit 1 = A Start-of-Frame token received by the peripheral or the Start-of-Frame threshold was reached by the host 0 = No Start-of-Frame token was received or threshold reached UERRIF: USB Error Condition Interrupt bit (read-only) 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit 0 = No unmasked error condition has occurred URSTIF: USB Reset Interrupt bit 1 = Valid USB Reset has occurred for at least 2.5 s; Reset state must be cleared before this bit can be reasserted 0 = No USB Reset has occurred. Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared. Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
bit 6 bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note:
DS39940D-page 224
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)
U-0 -- bit 15 R/K-0, HS STALLIF bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 U = Unimplemented bit, read as `0' K = Write `1' to clear bit `1' = Bit is set HS = Hardware Settable bit `0' = Bit is cleared x = Bit is unknown R/K-0, HS ATTACHIF R/K-0, HS RESUMEIF R/K-0, HS IDLEIF R/K-0, HS TRNIF R/K-0, HS SOFIF R-0 UERRIF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/K-0, HS DETACHIF bit 0
Unimplemented: Read as `0' STALLIF: STALL Handshake Interrupt bit 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent ATTACHIF: Peripheral Attach Interrupt bit 1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for 2.5 s 0 = No peripheral attachment is detected RESUMEIF: Resume Interrupt bit 1 = A K-state is observed on the D+ or D- pin for 2.5 s (differential `1' for low speed, differential `0' for full speed) 0 = No K-state is observed IDLEIF: Idle Detect Interrupt bit 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected TRNIF: Token Processing Complete Interrupt bit 1 = Processing of current token is complete; read U1STAT register for endpoint information 0 = Processing of current token is not complete; clear U1STAT register or load next token from U1STAT SOFIF: Start-of-Frame Token Interrupt bit 1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold reached by the host 0 = No Start-of-Frame token is received or threshold reached UERRIF: USB Error Condition Interrupt bit 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit 0 = No unmasked error condition has occurred DETACHIF: Detach Interrupt bit 1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reasserted 0 = No peripheral detachment detected. Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared. Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note:
2010 Microchip Technology Inc.
DS39940D-page 225
PIC24FJ64GB004 FAMILY
REGISTER 18-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)
U-0 -- bit 15 R/W-0 STALLIE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 ATTACHIE
(1)
U-0 --
U-0 --
U-0 --
U-0 --
U-0 --
U-0 --
U-0 -- bit 8
R/W-0 RESUMEIE
R/W-0 IDLEIE
R/W-0 TRNIE
R/W-0 SOFIE
R/W-0 UERRIE
R/W-0 URSTIE DETACHIE bit 0
Unimplemented: Read as `0' STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled ATTACHIE: Peripheral Attach Interrupt bit (Host mode only)(1) 1 = Interrupt is enabled 0 = Interrupt is disabled RESUMEIE: Resume Interrupt bit 1 = Interrupt is enabled 0 = Interrupt is disabled IDLEIE: Idle Detect Interrupt bit 1 = Interrupt is enabled 0 = Interrupt is disabled TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt is enabled 0 = Interrupt is disabled SOFIE: Start-of-Frame Token Interrupt bit 1 = Interrupt is enabled 0 = Interrupt disabled UERRIE: USB Error Condition Interrupt bit 1 = Interrupt is enabled 0 = Interrupt is disabled URSTIE or DETACHIE: USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode) Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled Unimplemented in Device mode; read as `0'.
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note 1:
DS39940D-page 226
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 18-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER
U-0 -- bit 15 R/K-0, HS BTSEF bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 U = Unimplemented bit, read as `0' K = Write `1' to clear bit `1' = Bit is set HS = Hardware Settable bit `0' = Bit is cleared x = Bit is unknown U-0 -- R/K-0, HS DMAEF R/K-0, HS BTOEF R/K-0, HS DFN8EF R/K-0, HS CRC16EF R/K-0, HS CRC5EF EOFEF U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/K-0, HS PIDEF bit 0
Unimplemented: Read as `0' BTSEF: Bit Stuff Error Flag bit 1 = Bit stuff error has been detected 0 = No bit stuff error Unimplemented: Read as `0' DMAEF: DMA Error Flag bit 1 = A USB DMA error condition detected; the data size indicated by the BD byte count field is less than the number of received bytes. The received data is truncated. 0 = No DMA error BTOEF: Bus Turnaround Time-out Error Flag bit 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out DFN8EF: Data Field Size Error Flag bit 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes CRC16EF: CRC16 Failure Flag bit 1 = CRC16 failed 0 = CRC16 passed For Device mode: CRC5EF: CRC5 Host Error Flag bit 1 = Token packet rejected due to CRC5 error 0 = Token packet accepted (no CRC5 error) For Host mode: EOFEF: End-Of-Frame Error Flag bit 1 = End-Of-Frame error has occurred 0 = End-Of-Frame interrupt disabled PIDEF: PID Check Failure Flag bit 1 = PID check failed 0 = PID check passed. Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
bit 6 bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
Note:
Individual bits can only be cleared by writing a `1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
2010 Microchip Technology Inc.
DS39940D-page 227
PIC24FJ64GB004 FAMILY
REGISTER 18-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER
U-0 -- bit 15 R/W-0 BTSEE bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- R/W-0 DMAEE R/W-0 BTOEE R/W-0 DFN8EE R/W-0 CRC16EE R/W-0 CRC5EE EOFEE U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 PIDEE bit 0
Unimplemented: Read as `0' BTSEE: Bit Stuff Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled Unimplemented: Read as `0' DMAEE: DMA Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled DFN8EE: Data Field Size Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled CRC16EE: CRC16 Failure Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled For Device mode: CRC5EE: CRC5 Host Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled For Host mode: EOFEE: End-of-Frame Error interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled PIDEE: PID Check Failure Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 6 bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
DS39940D-page 228
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
18.7.3 USB ENDPOINT MANAGEMENT REGISTERS REGISTER 18-21: U1EPn: USB ENDPOINT CONTROL REGISTERS (n = 0 TO 15)
U-0 -- bit 15 R/W-0 LSPD(1) bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 RETRYDIS(1) U-0 -- R/W-0 EPCONDIS R/W-0 EPRXEN R/W-0 EPTXEN R/W-0 EPSTALL U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 EPHSHK bit 0
Unimplemented: Read as `0' LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only)(1) 1 = Direct connection to a low-speed device is enabled 0 = Direct connection to a low-speed device is disabled RETRYDIS: Retry Disable bit (U1EP0 only)(1) 1 = Retry NAK transactions are disabled 0 = Retry NAK transactions are enabled; retry done in hardware Unimplemented: Read as `0' EPCONDIS: Bidirectional Endpoint Control bit If EPTXEN and EPRXEN = 1: 1 = Disable Endpoint n from Control transfers; only Tx and Rx transfers are allowed 0 = Enable Endpoint n for Control (SETUP) transfers; Tx and Rx transfers also are allowed. For all other combinations of EPTXEN and EPRXEN: This bit is ignored. EPRXEN: Endpoint Receive Enable bit 1 = Endpoint n receive is enabled 0 = Endpoint n receive is disabled EPTXEN: Endpoint Transmit Enable bit 1 = Endpoint n transmit is enabled 0 = Endpoint n transmit is disabled EPSTALL: Endpoint Stall Status bit 1 = Endpoint n was stalled 0 = Endpoint n was not stalled EPHSHK: Endpoint Handshake Enable bit 1 = Endpoint handshake is enabled 0 = Endpoint handshake is disabled (typically used for isochronous endpoints) These bits are available only for U1EP0, and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as `0'.
bit 6
bit 5 bit 4
bit 3
bit 2
bit 1
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 229
PIC24FJ64GB004 FAMILY
18.7.4 USB VBUS POWER CONTROL REGISTER REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER
R/W-0 PWMEN bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 PWMPOL R/W-0 CNTEN bit 8
PWMEN: PWM Enable bit 1 = PWM generator is enabled 0 = PWM generator is disabled; output is held in Reset state specified by PWMPOL Unimplemented: Read as `0' PWMPOL: PWM Polarity bit 1 = PWM output is active-low and resets high 0 = PWM output is active-high and resets low CNTEN: PWM Counter Enable bit 1 = Counter is enabled 0 = Counter is disabled Unimplemented: Read as `0'
bit 14-10 bit 9
bit 8
bit 7-0
DS39940D-page 230
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
19.0
Note:
PARALLEL MASTER PORT (PMP)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 13. "Parallel Master Port (PMP)" (DS39713).
Key features of the PMP module include: * Up to 16 Programmable Address Lines * One Chip Select Line * Programmable Strobe Options: - Individual Read and Write Strobes or; - Read/Write Strobe with Enable Strobe * Address Auto-Increment/Auto-Decrement * Programmable Address/Data Multiplexing * Programmable Polarity on Control Signals * Legacy Parallel Slave Port Support * Enhanced Parallel Slave Support: - Address Support - 4-Byte Deep Auto-Incrementing Buffer * Programmable Wait States * Selectable Input Voltage Levels
The Parallel Master Port (PMP) module is a parallel, 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. Note: A number of the pins for the PMP are not present on PIC24FJ64GB0 family devices. Refer to the specific device's pinout to determine which pins are available.
FIGURE 19-1:
PMP MODULE OVERVIEW
Address Bus Data Bus Control Lines PMA<0> PMALL PMA<1> PMALH (1) Up to 11-Bit Address
PIC24F Parallel Master Port
PMA<10:2> PMCS1
EEPROM
PMBE PMRD PMRD/PMWR PMWR PMENB PMD<7:0> PMA<7:0> PMA<15:8>
Microcontroller
LCD
FIFO Buffer
8-Bit Data
Note 1:
PMA<10:2> bits are not available on 28-pin devices.
2010 Microchip Technology Inc.
DS39940D-page 231
PIC24FJ64GB004 FAMILY
REGISTER 19-1:
R/W-0 PMPEN bit 15 R/W-0 CSF1 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 CSF0 R/W-0(2) ALP U-0 -- R/W-0(2) CS1P R/W-0 BEP R/W-0 WRSP
PMCON: PARALLEL PORT CONTROL REGISTER
U-0 -- R/W-0 PSIDL R/W-0 R/W-0 R/W-0 PTBEEN R/W-0 PTWREN R/W-0 PTRDEN bit 8 R/W-0 RDSP bit 0 ADRMUX1(1) ADRMUX0(1)
PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed Unimplemented: Read as `0' PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode ADRMUX<1:0>: Address/Data Multiplexing Selection bits(1) 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved ALP: Address Latch Polarity bit(2) 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) Unimplemented: Read as `0' CS1P: Chip Select 1 Polarity bit(2) 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) PMA<10:2> bits are not available on 28-pin devices. These bits have no effect when their corresponding pins are used as address lines.
bit 14 bit 13
bit 12-11
bit 10
bit 9
bit 8
bit 7-6
bit 5
bit 4 bit 3
Note 1: 2:
DS39940D-page 232
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 19-1:
bit 2
PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
BEP: Byte Enable Polarity bit 1 = Byte enable is active-high (PMBE) 0 = Byte enable is active-low (PMBE) WRSP: Write Strobe Polarity bit For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe is active-high (PMENB) 0 = Enable strobe is active-low (PMENB) RDSP: Read Strobe Polarity bit For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/write strobe is active-low (PMRD/PMWR) PMA<10:2> bits are not available on 28-pin devices. These bits have no effect when their corresponding pins are used as address lines.
bit 1
bit 0
Note 1: 2:
2010 Microchip Technology Inc.
DS39940D-page 233
PIC24FJ64GB004 FAMILY
REGISTER 19-2:
R-0 BUSY bit 15 R/W-0 WAITB1(1) bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 WAITB0(1) R/W-0 WAITM3 R/W-0 WAITM2 R/W-0 WAITM1 R/W-0 WAITM0 R/W-0 WAITE1(1)
PMMODE: PARALLEL PORT MODE REGISTER
R/W-0 IRQM0 R/W-0 INCM1 R/W-0 INCM0 R/W-0 MODE16 R/W-0 MODE1 R/W-0 MODE0 bit 8 R/W-0 WAITE0(1) bit 0
R/W-0 IRQM1
BUSY: Busy bit (Master mode only) 1 = Port is busy (not useful when the processor stall is active) 0 = Port is not busy IRQM<1:0>: Interrupt Request Mode bits 11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only) 10 = No interrupt is generated; processor stall activated 01 = Interrupt is generated at the end of the read/write cycle 00 = No interrupt is generated INCM<1:0>: Increment Mode bits 11 = PSP read and write buffers auto-increment (Legacy PSP mode only) 10 = Decrement ADDR<10:0> by 1 every read/write cycle 01 = Increment ADDR<10:0> by 1 every read/write cycle 00 = No increment or decrement of address MODE16: 8/16-Bit Mode bit 1 = 16-bit mode: Data register is 16 bits; a read or write to the Data register invokes two 8-bit transfers 0 = 8-bit mode: Data register is 8 bits; a read or write to the Data register invokes one 8-bit transfer MODE<1:0>: Parallel Port Mode Select bits 11 = Master Mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA and PMD<7:0>) 10 = Master Mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA and PMD<7:0>) 01 = Enhanced PSP control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>) 00 = Legacy Parallel Slave Port control signals (PMRD, PMWR, PMCS1 and PMD<7:0>) WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits(1) 11 = Data wait of 4 TCY; multiplexed address phase of 4 TCY 10 = Data wait of 3 TCY; multiplexed address phase of 3 TCY 01 = Data wait of 2 TCY; multiplexed address phase of 2 TCY 00 = Data wait of 1 TCY; multiplexed address phase of 1 TCY WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 TCY ... 0001 = Wait of additional 1 TCY 0000 = No additional wait cycles (operation forced into one TCY) WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits(1) 11 = Wait of 4 TCY 10 = Wait of 3 TCY 01 = Wait of 2 TCY 00 = Wait of 1 TCY WAITB and WAITE bits are ignored whenever WAITM<3:0> = 0000.
bit 14-13
bit 12-11
bit 10
bit 9-8
bit 7-6
bit 5-2
bit 1-0
Note 1:
DS39940D-page 234
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 19-3:
U-0 -- bit 15 R/W-0 ADDR7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
(1)
PMADDR: PARALLEL PORT ADDRESS REGISTER
U-0 -- U-0 -- U-0 -- R/W-0 ADDR10(1) R/W-0 ADDR9(1) R/W-0 ADDR8(1) bit 8 CS1
R/W-0
R/W-0 ADDR6(1)
R/W-0 ADDR5(1)
R/W-0 ADDR4(1)
R/W-0 ADDR3(1)
R/W-0 ADDR2(1)
R/W-0 ADDR1(1)
R/W-0 ADDR0(1) bit 0
Unimplemented: Read as `0' CS1: Chip Select 1 bit 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive Unimplemented: Read as `0' ADDR<10:0>: Parallel Port Destination Address bits(1) PMA<10:2> bits are not available on 28-pin devices.
bit 13-11 bit 10-0 Note 1:
REGISTER 19-4:
U-0 -- bit 15 R/W-0 PTEN7(1) bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14
PMAEN: PARALLEL PORT ENABLE REGISTER
U-0 -- U-0 -- U-0 -- R/W-0 PTEN10(1) R/W-0 PTEN9(1) R/W-0 PTEN8(1) bit 8
R/W-0 PTEN14
R/W-0 PTEN6(1)
R/W-0 PTEN5(1)
R/W-0 PTEN4(1)
R/W-0 PTEN3(1)
R/W-0 PTEN2(1)
R/W-0 PTEN1
R/W-0 PTEN0 bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' PTEN14: PMCS1 Strobe Enable bit 1 = PMCS1 functions as chip select 0 = PMCS1 pin functions as port I/O Unimplemented: Read as `0' PTEN<10:2>: PMP Address Port Enable bits(1) 1 = PMA<10:2> function as PMP address lines 0 = PMA<10:2> function as port I/O PTEN<1:0>: PMALH/PMALL Strobe Enable bits 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads function as port I/O PMA<10:2> bits are not available on 28-pin devices.
bit 13-11 bit 10-2
bit 1-0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 235
PIC24FJ64GB004 FAMILY
REGISTER 19-5:
R-0 IBF bit 15 R-1 OBE bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HS = Hardware Settable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0, HS OBUF U-0 -- U-0 -- R-1 OB3E R-1 OB2E R-1 OB1E R-1 OB0E bit 0
PMSTAT: PARALLEL PORT STATUS REGISTER
U-0 -- U-0 -- R-0 IB3F R-0 IB2F R-0 IB1F R-0 IB0F bit 8
R/W-0, HS IBOV
IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register has occurred (must be cleared in software) 0 = No overflow has occurred Unimplemented: Read as `0' IB3F:IB0F Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full OBUF: Output Buffer Underflow Status bits 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred Unimplemented: Read as `0' OB3E:OB0E Output Buffer x Status Empty bits 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted
bit 14
bit 13-12 bit 11-8
bit 7
bit 6
bit 5-4 bit 3-0
DS39940D-page 236
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 19-6:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-3 bit 2-1 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 R/W-0 --
PADCFG1: PAD CONFIGURATION CONTROL REGISTER
U-0 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 R/W-0 PMPTTL bit 0
RTSECSEL1(1) RTSECSEL0(1)
Unimplemented: Read as `0' RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits(1) 11 = Reserved; do not use 10 = RTCC source clock is selected for the RTCC pin (clock can be LPRC or SOSC, depending on the setting of the Flash Configuration bit, RTCOSC (CW4<5>)) 01 = RTCC seconds clock is selected for the RTCC pin 00 = RTCC alarm pulse is selected for the RTCC pin PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffers To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 237
PIC24FJ64GB004 FAMILY
FIGURE 19-2:
Master PMD<7:0> PMCS1 PMRD PMWR
LEGACY PARALLEL SLAVE PORT EXAMPLE
PIC24F Slave PMD<7:0> PMCS1 PMRD PMWR Address Bus Data Bus Control Lines
FIGURE 19-3:
Master PMA<1:0> PMD<7:0>
ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE
PMA<1:0> PMD<7:0> Write Address Decode PMDOUT1L (0) PIC24F Slave
Read Address Decode PMDIN1L (0) PMDIN1H (1) PMDIN2L (2) PMDIN2H (3)
PMCS1 PMRD PMWR Address Bus Data Bus Control Lines
PMCS1 PMRD PMWR
PMDOUT1H (1) PMDOUT2L (2) PMDOUT2H (3)
TABLE 19-1:
SLAVE MODE ADDRESS RESOLUTION
Output Register (Buffer) PMDOUT1<7:0> (0) PMDOUT1<15:8> (1) PMDOUT2<7:0> (2) PMDOUT2<15:8> (3) Input Register (Buffer) PMDIN1<7:0> (0) PMDIN1<15:8> (1) PMDIN2<7:0> (2) PMDIN2<15:8> (3)
PMA<1:0> 00 01 10 11
FIGURE 19-4:
MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)
PIC24F
PMA<10:0>
PMD<7:0> PMCS1 PMRD
Address Bus Data Bus Control Lines
PMWR
DS39940D-page 238
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
FIGURE 19-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)
PIC24F
PMA<10:8> PMD<7:0> PMA<7:0> PMCS1 PMALL PMRD PMWR
Address Bus Multiplexed Data and Address Bus Control Lines
FIGURE 19-6:
MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)
PIC24F
PMD<7:0> PMA<7:0> PMA<15:8> PMCS1 PMALL PMALH PMRD PMWR
Multiplexed Data and Address Bus Control Lines
FIGURE 19-7:
EXAMPLE OF A MULTIPLEXED ADDRESSING APPLICATION
373 A<7:0> D<7:0> A<15:8> A<15:0> D<7:0> CE OE WR Address Bus Data Bus Control Lines
PIC24F PMD<7:0> PMALL
PMALH PMCS1 PMRD PMWR
373
FIGURE 19-8:
EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION
373 A<7:0> D<7:0> A<10:8> A<10:0> D<7:0> CE OE WR Address Bus Data Bus Control Lines
PIC24F PMD<7:0> PMALL PMA<10:8> PMCS1 PMRD PMWR
2010 Microchip Technology Inc.
DS39940D-page 239
PIC24FJ64GB004 FAMILY
FIGURE 19-9:
PIC24F PMD<7:0> PMALL PMCS1 PMRD PMWR
EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION
Parallel Peripheral AD<7:0> ALE CS RD WR Address Bus Data Bus Control Lines
FIGURE 19-10:
PIC24F
PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 8-BIT DATA)
Parallel EEPROM A D<7:0> CE OE WR Address Bus Data Bus Control Lines
PMA PMD<7:0> PMCS1 PMRD PMWR
FIGURE 19-11:
PIC24F
PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 16-BIT DATA)
Parallel EEPROM A D<7:0> A0 CE OE WR Address Bus Data Bus Control Lines
PMA PMD<7:0> PMBE PMCS1 PMRD PMWR
FIGURE 19-12:
PIC24F
LCD CONTROL EXAMPLE (BYTE MODE OPERATION)
LCD Controller D<7:0> RS
PMD<7:0> PMA0 PMRD/PMWR PMCS1
R/W
E
Address Bus Data Bus Control Lines
DS39940D-page 240
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
20.0
Note:
REAL-TIME CLOCK AND CALENDAR (RTCC)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).
The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated. Key features of the RTCC module are: * Operates in Deep Sleep mode * Selectable clock source * Provides hours, minutes and seconds using 24-hour format * Visibility of one half second period * Provides calendar - weekday, date, month and year
* Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year * Alarm repeat with decrementing counter * Alarm with indefinite repeat chime * Year 2000 to 2099 leap year correction * BCD format for smaller software overhead * Optimized for long-term battery operation * User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
20.1
RTCC Source Clock
The user can select between the SOSC crystal oscillator or the LPRC Low-Power Internal RC Oscillator as the clock reference for the RTCC module. This is configured using the RTCOSC (CW4<5>) Configuration bit. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.
FIGURE 20-1:
RTCC BLOCK DIAGRAM
RTCC Clock Domain CPU Clock Domain RCFGCAL RTCC Prescalers 0.5 Sec RTCC Timer RTCVAL 1 Sec Comparator ALMTHDY ALWDHR ALMINSEC RTSECSEL<1:0> 01 RTCC Interrupt Logic RTCC Interrupt Alarm Pulse 00 RTCC Pin Clock Source RTCOE 10 ALCFGRPT YEAR MTHDY WKDYHR MINSEC
Input from SOSC/LPRC Oscillator
Alarm Event
Alarm Registers with Masks
ALRMVAL
Repeat Counter
2010 Microchip Technology Inc.
DS39940D-page 241
PIC24FJ64GB004 FAMILY
20.2 RTCC Module Registers
TABLE 20-2:
ALRMPTR <1:0> 00 01 10 11 The RTCC module registers are organized as three categories: * RTCC Control Registers * RTCC Value Registers * Alarm Value Registers
ALRMVAL REGISTER MAPPING
Alarm Value Register Window ALRMVAL<15:8> ALRMVAL<7:0> ALRMMIN ALRMWD ALRMMNTH -- ALRMSEC ALRMHR ALRMDAY --
20.2.1
REGISTER MAPPING
To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 20-1). By writing to the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrements by one until they reach `00'. After they reach `00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.
Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented. Note: This only applies to read operations and not write operations.
20.2.2
WRITE LOCK
TABLE 20-1:
RTCPTR<1:0> 00 01 10 11
RTCVAL REGISTER MAPPING
RTCC Value Register Window RTCVAL<15:8> MINUTES WEEKDAY MONTH -- RTCVAL<7:0> SECONDS HOURS DAY YEAR
In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 20-1). Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 20-1.
The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 20-2). By writing to the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrements by one until they reach `00'. Once they reach `00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.
20.2.3
SELECTING RTCC CLOCK SOURCE
The clock source for the RTCC module can be selected using the Flash Configuration bit, RTCOSC (CW4<5>). When the bit is set to `1', the Secondary Oscillator (SOSC) is used as the reference clock, and when the bit is `0', LPRC is used as the reference clock.
EXAMPLE 20-1:
asm asm asm asm asm asm asm asm asm asm
SETTING THE RTCWREN BIT
volatile("push w7"); volatile("push w8"); volatile("disi #5"); volatile("mov #0x55, w7"); volatile("mov w7, _NVMKEY"); volatile("mov #0xAA, w8"); volatile("mov w8, _NVMKEY"); volatile("bset _RCFGCAL, #13"); volatile("pop w8"); volatile("pop w7");
//set the RTCWREN bit
DS39940D-page 242
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
20.2.4 RTCC CONTROL REGISTERS REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)
R/W-0 RTCEN bit 15 R/W-0 CAL7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HSC = Hardware Settable/Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 CAL6 R/W-0 CAL5 R/W-0 CAL4 R/W-0 CAL3 R/W-0 CAL2 R/W-0 CAL1
(2)
U-0 --
R/W-0 RTCWREN
R-0, HSC RTCSYNC
R-0, HSC HALFSEC(3)
R/W-0 RTCOE
R/W-0 RTCPTR1
R/W-0 RTCPTR0 bit 8 R/W-0 CAL0 bit 0
RTCEN: RTCC Enable bit(2) 1 = RTCC module is enabled 0 = RTCC module is disabled Unimplemented: Read as `0' RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple HALFSEC: Half Second Status bit(3) 1 = Second half period of a second 0 = First half period of a second RTCOE: RTCC Output Enable bit 1 = RTCC output is enabled 0 = RTCC output is disabled RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches `00'. RTCVAL<15:8>: 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved RTCVAL<7:0>: 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR The RCFGCAL register is only affected by a POR. A write to the RTCEN bit is only allowed when RTCWREN = 1. This bit is read-only; it is cleared to `0' on a write to the lower half of the MINSEC register.
bit 14 bit 13
bit 12
bit 11
bit 10
bit 9-8
Note 1: 2: 3:
2010 Microchip Technology Inc.
DS39940D-page 243
PIC24FJ64GB004 FAMILY
REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1) (CONTINUED)
bit 7-0 CAL<7:0>: RTC Drift Calibration bits 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute . . . 01111111 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment 11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute . . . 10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute The RCFGCAL register is only affected by a POR. A write to the RTCEN bit is only allowed when RTCWREN = 1. This bit is read-only; it is cleared to `0' on a write to the lower half of the MINSEC register.
Note 1: 2: 3:
REGISTER 20-2:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-3 bit 2-1
PADCFG1: PAD CONFIGURATION CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 8 U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 R/W-0 R/W-0 PMPTTL bit 0
RTSECSEL1(1) RTSECSEL0(1)
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits(1) 11 = Reserved; do not use 10 = RTCC source clock is selected for the RTCC pin (clock can be LPRC or SOSC, depending on the setting of the RTCOSC bit (CW4<5>)) 01 = RTCC seconds clock is selected for the RTCC pin 00 = RTCC alarm pulse is selected for the RTCC pin PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffers To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.
bit 0
Note 1:
DS39940D-page 244
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 20-3:
R/W-0 ALRMEN bit 15 R/W-0 ARPT7 bit 7
ALCFGRPT: ALARM CONFIGURATION REGISTER
R/W-0 AMASK3 R/W-0 AMASK2 R/W-0 AMASK1 R/W-0 AMASK0 R/W-0 ALRMPTR1 R/W-0 ALRMPTR0 bit 8 R/W-0 ARPT0 bit 0
R/W-0 CHIME
R/W-0 ARPT6
R/W-0 ARPT5
R/W-0 ARPT4
R/W-0 ARPT3
R/W-0 ARPT2
R/W-0 ARPT1
Legend: R = Readable bit -n = Value at POR bit 15
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 14
bit 13-10
bit 9-8
bit 7-0
ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and CHIME = 0) 0 = Alarm is disabled CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h AMASK<3:0>: Alarm Mask Configuration bits 0000 = Every half second 0001 = Every second 0010 = Every 10 seconds 0011 = Every minute 0100 = Every 10 minutes 0101 = Every hour 0110 = Once a day 0111 = Once a week 1000 = Once a month 1001 = Once a year (except when configured for February 29th, once every 4 years) 101x = Reserved; do not use 11xx = Reserved; do not use ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches `00'. ALRMVAL<15:8>: 00 = ALRMMIN 01 = ALRMWD 10 = ALRMMNTH 11 = Unimplemented ALRMVAL<7:0>: 00 = ALRMSEC 01 = ALRMHR 10 = ALRMDAY 11 = Unimplemented ARPT<7:0>: Alarm Repeat Counter Value bits 11111111 = Alarm will repeat 255 more times . . . 00000000 = Alarm will not repeat The counter decrements on any alarm event; it is prevented from rolling over from 00h to FFh unless CHIME = 1.
2010 Microchip Technology Inc.
DS39940D-page 245
PIC24FJ64GB004 FAMILY
20.2.5 RTCVAL REGISTER MAPPINGS YEAR: YEAR VALUE REGISTER(1)
U-0, HSC -- U-0, HSC -- U-0, HSC -- U-0, HSC -- U-0, HSC -- U-0, HSC -- bit 8 R/W-x, HSC YRTEN2 R/W-x, HSC YRTEN1 R/W-x, HSC YRTEN0 R/W-x, HSC YRONE3 R/W-x, HSC YRONE2 R/W-x, HSC YRONE1 R/W-x, HSC YRONE0 bit 0 HSC = Hardware Settable/Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown --
REGISTER 20-4:
U-0, HSC -- bit 15 R/W-x, HSC YRTEN3 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-8 bit 7-4 bit 3-0
U-0, HSC
Unimplemented: Read as `0' YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9. YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9. A write to the YEAR register is only allowed when RTCWREN = 1.
Note 1:
REGISTER 20-5:
U-0, HSC -- bit 15 U-0, HSC -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12 bit 11-8 bit 7-6 bit 5-4 bit 3-0
MTHDY: MONTH AND DAY VALUE REGISTER(1)
U-0, HSC -- R/W-x, HSC MTHTEN0 R/W-x, HSC MTHONE3 R/W-x, HSC MTHONE2 R/W-x, HSC MTHONE1 R/W-x, HSC MTHONE0 bit 8 --
U-0, HSC
U-0, HSC --
R/W-x, HSC DAYTEN1
R/W-x, HSC DAYTEN0
R/W-x, HSC DAYONE3
R/W-x, HSC DAYONE2
R/W-x, HSC DAYONE1
R/W-x, HSC DAYONE0 bit 0
HSC = Hardware Settable/Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of `0' or `1'. MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9. Unimplemented: Read as `0' DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3. DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9. A write to this register is only allowed when RTCWREN = 1.
Note 1:
DS39940D-page 246
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 20-6:
U-0, HSC -- bit 15 U-0, HSC -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10-8 bit 7-6 bit 5-4 bit 3-0 HSC = Hardware Settable/Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0, HSC -- R/W-x, HSC HRTEN1 R/W-x, HSC HRTEN0 R/W-x, HSC HRONE3 R/W-x, HSC HRONE2 R/W-x, HSC HRONE1
WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)
U-0, HSC -- U-0, HSC -- U-0, HSC -- R/W-x, HSC WDAY2 R/W-x, HSC WDAY1 R/W-x, HSC WDAY0 bit 8 R/W-x, HSC HRONE0 bit 0 --
U-0, HSC
Unimplemented: Read as `0' WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6. Unimplemented: Read as `0' HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2. HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9. A write to this register is only allowed when RTCWREN = 1.
Note 1:
REGISTER 20-7:
U-0, HSC -- bit 15 U-0, HSC -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 bit 11-8 bit 7 bit 6-4 bit 3-0
MINSEC: MINUTES AND SECONDS VALUE REGISTER
R/W-x, HSC MINTEN1 R/W-x, HSC MINTEN0 R/W-x, HSC MINONE3 R/W-x, HSC MINONE2 R/W-x, HSC MINONE1 R/W-x, HSC MINONE0 bit 8
R/W-x, HSC MINTEN2
R/W-x, HSC SECTEN2
R/W-x, HSC SECTEN1
R/W-x, HSC SECTEN0
R/W-x, HSC SECONE3
R/W-x, HSC SECONE2
R/W-x, HSC SECONE1
R/W-x, HSC SECONE0 bit 0
HSC = Hardware Settable/Clearable bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. Unimplemented: Read as `0' SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.
2010 Microchip Technology Inc.
DS39940D-page 247
PIC24FJ64GB004 FAMILY
20.2.6 ALRMVAL REGISTER MAPPINGS ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)
U-0 -- U-0 -- R/W-x MTHTEN0 R/W-x MTHONE3 R/W-x MTHONE2 R/W-x MTHONE1 R/W-x MTHONE0 bit 8 R/W-x DAYONE0 bit 0
REGISTER 20-8:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12 bit 11-8 bit 7-6 bit 5-4 bit 3-0 Note 1:
U-0 --
R/W-x DAYTEN1
R/W-x DAYTEN0
R/W-x DAYONE3
R/W-x DAYONE2
R/W-x DAYONE1
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of `0' or `1'. MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9. Unimplemented: Read as `0' DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3. DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9. A write to this register is only allowed when RTCWREN = 1.
REGISTER 20-9:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10-8 bit 7-6 bit 5-4 bit 3-0 Note 1:
ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)
U-0 -- U-0 -- U-0 -- U-0 -- R/W-x WDAY2 R/W-x WDAY1 R/W-x WDAY0 bit 8 R/W-x HRONE0 bit 0
U-0 --
R/W-x HRTEN1
R/W-x HRTEN0
R/W-x HRONE3
R/W-x HRONE2
R/W-x HRONE1
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
Unimplemented: Read as `0' WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6. Unimplemented: Read as `0' HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2. HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9. A write to this register is only allowed when RTCWREN = 1.
DS39940D-page 248
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15 bit 14-12 bit 11-8 bit 7 bit 6-4 bit 3-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-x SECTEN2 R/W-x SECTEN1 R/W-x SECTEN0 R/W-x SECONE3 R/W-x SECONE2 R/W-x SECONE1 R/W-x MINTEN2 R/W-x MINTEN1 R/W-x MINTEN0 R/W-x MINONE3 R/W-x MINONE2 R/W-x MINONE1 R/W-x MINONE0 bit 8 R/W-x SECONE0 bit 0
Unimplemented: Read as `0' MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. Unimplemented: Read as `0' SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.
2010 Microchip Technology Inc.
DS39940D-page 249
PIC24FJ64GB004 FAMILY
20.3 Calibration
20.4.1 CONFIGURING THE ALARM
The real-time crystal input can be calibrated using the periodic auto-adjust feature. When calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration: 1. 2. 3. Using another timer resource on the device; the user must find the error of the 32.768 kHz crystal. Once the error is known, it must be converted to the number of error clock pulses per minute. a) If the oscillator is faster than ideal (negative result from step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute. b) If the oscillator is slower than ideal (positive result from step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute. The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0. As displayed in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur. The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh. After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off. Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.
Divide the number of error clocks per minute by 4 to get the correct calibration value and load the RCFGCAL register with the correct value. (Each 1-bit increment in the calibration adds or subtracts 4 pulses.)
20.4.2
ALARM INTERRUPT
EQUATION 20-1:
(Ideal Frequency - Measured Frequency) * 60 = Clocks per Minute Ideal Frequency = 32,768 Hz Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse. Note: It is up to the user to include, in the error value, the initial error of the crystal drift due to temperature and drift due to crystal aging.
At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals. Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.
20.4
Alarm
* Configurable from half second to one year * Enabled using the ALRMEN bit (ALCFGRPT<15>) * One-time alarm and repeat alarm options are available
DS39940D-page 250
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
FIGURE 20-2: ALARM MASK SETTINGS
Day of the Week Alarm Mask Setting (AMASK<3:0>) 0000 - Every half second 0001 - Every second 0010 - Every 10 seconds 0011 - Every minute 0100 - Every 10 minutes 0101 - Every hour 0110 - Every day 0111 - Every week 1000 - Every month 1001 - Every year(1) s m m m s s s s s s
Month
Day
Hours
Minutes
Seconds
h d d m m d d d h h h
h h h h
m m m m
m m m m
s s s s
s s s s
Note 1:
Annually, except when configured for February 29.
2010 Microchip Technology Inc.
DS39940D-page 251
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 252
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
21.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features: * User-programmable CRC polynomial equation, up to 32 bits * Programmable shift direction (little or big-endian) * Independent data and polynomial lengths * Configurable Interrupt output * Data FIFO A simplified block diagram of the CRC generator is shown in Figure 21-1. A simple version of the CRC shift engine is shown in Figure 21-2.
Note:
FIGURE 21-1:
CRC BLOCK DIAGRAM
CRCDATH CRCDATL
Variable FIFO (4x32, 8x16 or 16x8)
FIFO Empty Event
CRCISEL 2 * FCY Shift Clock Shift Buffer 1 0 0 1 LENDIAN
Set CRCIF
CRC Shift Engine
Shift Complete Event
CRCWDATH
CRCWDATL
FIGURE 21-2:
CRC SHIFT ENGINE DETAIL
CRCWDATH CRCWDATL
Read/Write Bus X(1)(1) Shift Buffer Data X(2)(1) X(n)(1)
Bit 0
Bit 1
Bit 2
Bit n(2)
Note 1: 2:
Each XOR stage of the shift engine is programmable. See text for details. Polynomial length n is determined by ([PLEN<3:0>] + 1).
2010 Microchip Technology Inc.
DS39940D-page 253
PIC24FJ64GB004 FAMILY
21.1
21.1.1
User Interface
POLYNOMIAL INTERFACE
The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>). The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR. For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation: x16 + x12 + x5 + 1 and x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 To program these polynomials into the CRC generator, set the register bits as shown in Table 21-1. Note that the appropriate positions are set to `1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the Nth bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.
The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is one byte. For example, if the DWIDTH value is five, then the size of the data is DWIDTH + 1, or six. The data is written as a whole byte; the two unused upper bits are ignored by the module. Once data is written into the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTH value is 24, the VWORD bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written before CRCDATH. The CRC engine starts shifting data when the CRCGO bit is set and the value of VWORD is greater than zero. Each word is copied out of the FIFO into a buffer register, which decrements VWORD. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORD value reaches zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data. When the VWORD value reaches the maximum value for the configured value of DWIDTH (4, 8 or 16), the CRCFUL bit becomes set. When the VWORD value reaches zero, the CRCMPT bit becomes set. The FIFO is emptied and VWORD<4:0> are set to `00000' whenever CRCEN is `0'. At least one instruction cycle must pass, after a write to CRCDAT, before a read of the VWORD bits is done.
21.1.2
DATA INTERFACE
The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between one and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is four words deep. When the DWIDTH value is between 15 and 8, the FIFO is 8 words deep. When the DWIDTH value is less than 8, the FIFO is 16 words deep.
TABLE 21-1:
CRC Control Bits PLEN<4:0> X<31:16> X<15:0>
CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL
Bit Values 16-Bit Polynomial 01111 0000 0000 0000 000x 0001 0000 0010 000x 32-Bit Polynomial 11111 0000 0100 1100 0001 0001 1101 1011 011x
DS39940D-page 254
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
21.1.3 DATA SHIFT DIRECTION
21.2
* * * * * * * *
Registers
The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.
There are eight registers associated with the module: CRCCON1 CRCCON2 CRCXORL CRCXORH CRCDATL CRCDATH CRCWDATL CRCWDATH
21.1.4
INTERRUPT OPERATION
The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is `0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of `1' to `0'. If CRCISEL is `1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to `0'. Manually setting CRCGO to `0' will not generate an interrupt.
The CRCCON1 and CRCCON2 registers (Register 21-1 and Register 21-2) control the operation of the module and configure the various settings. The CRCXOR registers (Register 21-3 and Register 21-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.
21.1.5
1. 2.
TYPICAL OPERATION
To use the module for a typical CRC calculation: Set the CRCEN bit to enable the module. Configure the module for the desired operation: a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits b) Configure the data width and shift direction using the DWIDTH and LENDIAN bits c) Select the desired interrupt mode using the CRCISEL bit Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation. Set the CRCGO bit to start calculation. Write remaining data into the FIFO as space becomes available. When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1. Read CRCWDATL and CRCWDATH for the result of the calculation.
3.
4.
5. 6. 7.
8.
2010 Microchip Technology Inc.
DS39940D-page 255
PIC24FJ64GB004 FAMILY
REGISTER 21-1:
R/W-0 CRCEN bit 15 R-0, HCS CRCFUL bit 7 Legend: R = Readable bit -n = Value at POR bit 15 HC = Hardware Clearable bit W = Writable bit `1' = Bit is set HCS = Hardware Clearable/Settable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R-1, HCS CRCMPT R/W-0 CRCISEL R/W-0, HC CRCGO R/W-0 LENDIAN U-0 -- U-0 -- --
CRCCON1: CRC CONTROL REGISTER 1
U-0 R/W-0 CSIDL R-0 VWORD4 R-0 VWORD3 R-0 VWORD2 R-0 VWORD1 R-0 VWORD0 bit 8 U-0 -- bit 0
CRCEN: CRC Enable bit 1 = Module is enabled 0 = Module is enabled. All state machines, pointers and CRCWDAT/CRCDAT are reset; other SFRs are NOT reset Unimplemented: Read as `0' CSIDL: CRC Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7 or 16 when PLEN<3:0> 7. CRCFUL: FIFO Full bit 1 = FIFO is full 0 = FIFO is not full CRCMPT: FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty CRCISEL: CRC interrupt Selection bit 1 = Interrupt on FIFO is empty; CRC calculation is not complete 0 = Interrupt on shift is complete and CRCWDAT result is ready CRCGO: Start CRC bit 1 = Start CRC serial shifter 0 = CRC serial shifter is turned off LENDIAN: Data Shift Direction Select bit 1 = Data word is shifted into the CRC starting with the LSb (little endian) 0 = Data word is shifted into the CRC starting with the MSb (big endian) Unimplemented: Read as `0'
bit 14 bit 13
bit 12-8
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2-0
DS39940D-page 256
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 21-2:
U-0 -- bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12-8 bit 7-5 bit 4-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 PLEN4 R/W-0 PLEN3 R/W-0 PLEN2 R/W-0 PLEN1
CRCCON2: CRC CONTROL REGISTER 2
U-0 -- U-0 -- R/W-0 DWIDTH4 R/W-0 DWIDTH3 R/W-0 DWIDTH2 R/W-0 DWIDTH1 R/W-0 DWIDTH0 bit 8 R/W-0 PLEN0 bit 0
Unimplemented: Read as `0' DWIDTH<4:0>: Data Width Select bits Defines the width of the data word (Data Word Width = (DWIDTH<4:0>) + 1). Unimplemented: Read as `0' PLEN<4:0>: Polynomial Length Select bits Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).
REGISTER 21-3:
R/W-0 X15 bit 15 R/W-0 X7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-1 bit 0
CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE
R/W-0 X13 R/W-0 X12 R/W-0 X11 R/W-0 X10 R/W-0 X9 R/W-0 X8 bit 8 X14
R/W-0
R/W-0 X6
R/W-0 X5
R/W-0 X4
R/W-0 X3
R/W-0 X2
R/W-0 X1
U-0 -- bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
X<15:1>: XOR of Polynomial Term Xn Enable bits Unimplemented: Read as `0'
2010 Microchip Technology Inc.
DS39940D-page 257
PIC24FJ64GB004 FAMILY
REGISTER 21-4:
R/W-0 X31 bit 15 R/W-0 X23 bit 7 Legend: R = Readable bit -n = Value at POR bit 15-0 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 X22 R/W-0 X21 R/W-0 X20 R/W-0 X19 R/W-0 X18 R/W-0 X17
CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE
R/W-0 X29 R/W-0 X28 R/W-0 X27 R/W-0 X26 R/W-0 X25 R/W-0 X24 bit 8 R/W-0 X16 bit 0 X30
R/W-0
X<31:16>: XOR of Polynomial Term Xn Enable bits
DS39940D-page 258
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
22.0
Note:
10-BIT HIGH-SPEED A/D CONVERTER
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).
A block diagram of the A/D Converter is shown in Figure 22-1. To perform an A/D conversion: 1. Configure the A/D module: a) Configure port pins as analog inputs and/or select band gap reference inputs (AD1PCFGL<15:0> and AD1PCFGH<1:0>). b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>). c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>). d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>). e) Select how conversion results are presented in the buffer (AD1CON1<9:8>). f) Select interrupt rate (AD1CON2<5:2>). g) Turn on A/D module (AD1CON1<15>). Configure the A/D interrupt (if required): a) Clear the AD1IF bit. b) Select A/D interrupt priority.
The 10-bit A/D Converter has the following key features: * * * * * * * * * * * Successive Approximation (SAR) conversion Conversion speeds of up to 500 ksps 13 analog input pins External voltage reference input pins Internal band gap reference inputs Automatic Channel Scan mode Selectable conversion trigger source 16-word conversion result buffer Selectable Buffer Fill modes Four result alignment options Operation during CPU Sleep and Idle modes
2.
On all PIC24FJ64GB004 family devices, the 10-bit A/D Converter has 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.
2010 Microchip Technology Inc.
DS39940D-page 259
PIC24FJ64GB004 FAMILY
FIGURE 22-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM
Internal Data Bus AVDD AVSS VREF+ VREFVINH AN0 AN1 AN2 AN3 MUX A AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 VDDCORE VBG/2 VBG
Sample Control Input MUX Control Pin Config Control VRS/H VR+
VR Select
VR+
16
VRComparator VINL DAC
VINH
10-Bit SAR
Conversion Logic
Data Formatting
VINL
ADC1BUF0: ADC1BUFF AD1CON1 AD1CON2 AD1CON3 AD1CHS0
MUX B
VINH
AD1PCFGL AD1PCFGH AD1CSSL AD1CSSH
VINL
Control Logic
Conversion Control
DS39940D-page 260
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 22-1:
R/W-0 ADON(1) bit 15 R/W-0 SSRC2 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 C = Clearable bit W = Writable bit `1' = Bit is set HCS = Hardware Clearable/Settable bit U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 SSRC1 R/W-0 SSRC0 U-0 -- U-0 -- R/W-0 ASAM R/W-0, HCS SAMP
AD1CON1: A/D CONTROL REGISTER 1
U-0 -- R/W-0 ADSIDL U-0 -- U-0 -- U-0 -- R/W-0 FORM1 R/W-0 FORM0 bit 8 R/C-0, HCS DONE bit 0
ADON: A/D Operating Mode bit(1) 1 = A/D Converter module is operating 0 = A/D Converter is off Unimplemented: Read as `0' ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Unimplemented: Read as `0' FORM<1:0>: Data Output Format bits 11 = Signed fractional (sddd dddd dd00 0000) 10 = Fractional (dddd dddd dd00 0000) 01 = Signed integer (ssss sssd dddd dddd) 00 = Integer (0000 00dd dddd dddd) SSRC<2:0>: Conversion Trigger Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU event ends sampling and starts conversion 101 = Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = Reserved 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing the SAMP bit ends sampling and starts conversion Unimplemented: Read as `0' ASAM: A/D Sample Auto-Start bit 1 = Sampling begins immediately after the last conversion completes; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set SAMP: A/D Sample Enable bit 1 = A/D sample/hold amplifier is sampling input 0 = A/D sample/hold amplifier is holding DONE: A/D Conversion Status bit 1 = A/D conversion is done 0 = A/D conversion is NOT done Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.
bit 14 bit 13
bit 12-10 bit 9-8
bit 7-5
bit 4-3 bit 2
bit 1
bit 0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 261
PIC24FJ64GB004 FAMILY
REGISTER 22-2:
R/W-0 VCFG2 bit 15 R-0 BUFS bit 7 Legend: R = Readable bit -n = Value at POR bit 15-13 r = Reserved bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- R/W-0 SMPI3 R/W-0 SMPI2 R/W-0 SMPI1 R/W-0 SMPI0 R/W-0 BUFM
AD1CON2: A/D CONTROL REGISTER 2
R/W-0 VCFG0 r-0 r U-0 -- R/W-0 CSCNA U-0 -- U-0 -- bit 8 R/W-0 ALTS bit 0
R/W-0 VCFG1
VCFG<2:0>: Voltage Reference Configuration bits VCFG<2:0> 000 001 010 011 1xx VR+ AVDD External VREF+ pin AVDD External VREF+ pin AVDD VRAVSS AVSS External VREF- pin External VREF- pin AVSS
bit 12 bit 11 bit 10
Reserved: Maintain as `0' Unimplemented: Read as `0' CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs Unimplemented: Read as `0' BUFS: Buffer Fill Status bit (valid only when BUFM = 1) 1 = A/D is currently filling buffer 08-0F; user should access data in 00-07 0 = A/D is currently filling buffer 00-07; user should access data in 08-0F Unimplemented: Read as `0' SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits 1111 = Interrupts are at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts are at the completion of conversion for each 15th sample/convert sequence ..... 0001 = Interrupts are at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts are at the completion of conversion for each sample/convert sequence BUFM: Buffer Mode Select bit 1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>) 0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>) ALTS: Alternate Input Sample Mode Select bit 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples 0 = Always uses MUX A input multiplexer settings
bit 9-8 bit 7
bit 6 bit 5-2
bit 1
bit 0
DS39940D-page 262
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 22-3:
R/W-0 ADRC bit 15 R/W-0 ADCS7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 r = Reserved bit W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 ADCS6 R/W-0 ADCS5 R/W-0 ADCS4 R/W-0 ADCS3 R/W-0 ADCS2 R/W-0 ADCS1 r
AD1CON3: A/D CONTROL REGISTER 3
r-0 r-0 r R/W-0 SAMC4 R/W-0 SAMC3 R/W-0 SAMC2 R/W-0 SAMC1 R/W-0 SAMC0 bit 8 R/W-0 ADCS0 bit 0
ADRC: A/D Conversion Clock Source bit 1 = A/D internal RC clock 0 = Clock derived from system clock Reserved: Maintain as `0' SAMC<4:0>: Auto-Sample Time bits 11111 = 31 TAD ***** 00001 = 1 TAD 00000 = 0 TAD (not recommended) ADCS<7:0>: A/D Conversion Clock Select bits 11111111 to 01000000 = Reserved ****** 00111111 = 64 * TCY ****** 00000001 = 2 * TCY 00000000 = TCY
bit 14-13 bit 12-8
bit 7-0
2010 Microchip Technology Inc.
DS39940D-page 263
PIC24FJ64GB004 FAMILY
REGISTER 22-4:
R/W-0 CH0NB bit 15 R/W-0 CH0NA bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown U-0 -- U-0 -- R/W-0 CH0SA4 R/W-0 CH0SA3 R/W-0 CH0SA2 R/W-0 CH0SA1
AD1CHS: A/D INPUT SELECT REGISTER
U-0 -- U-0 -- R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 bit 8 R/W-0 CH0SA0 bit 0 CH0SB4(1,2) CH0SB3(1,2) CH0SB2(1,2) CH0SB1(1,2) CH0SB0(1,2)
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VRUnimplemented: Read as `0' CH0SB<4:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits(1,2) 11111 = Channel 0 positive input is reserved for CTMU use only(3) 1xxxx = Unimplemented; do not use. 01111 = Channel 0 positive input is internal band gap reference (VBG) 01110 = Channel 0 positive input is VBG/2 01101 = Channel 0 positive input is voltage regulator output (VDDCORE) 01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11 01010 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN9 01000 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN7 00110 = Channel 0 positive input is AN6 00101 = Channel 0 positive input is AN5 00100 = Channel 0 positive input is AN4 00011 = Channel 0 positive input is AN3 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0 CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VRUnimplemented: Read as `0' CH0SA<4:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits Implemented combinations are identical to those for CH0SB<4:0> (above). Combinations not shown here are unimplemented; do not use. Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; do not use. Selecting this internal channel allows the CTMU module to utilize the A/D Converter sample and hold capacitor (CAD) for the smallest time measurements.
bit 14-13 bit 12-8
bit 7
bit 6-5 bit 4-0
Note 1: 2: 3:
DS39940D-page 264
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 22-5:
R/W-0 PCFG15 bit 15 R/W-0(1) PCFG7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0(1) PCFG6 R/W-0 PCFG5 R/W-0 PCFG4 R/W-0 PCFG3 R/W-0 PCFG2 R/W-0 PCFG1
AD1PCFG: A/D PORT CONFIGURATION REGISTER
R/W-0 PCFG13 R/W-0(1) PCFG12 R/W-0 PCFG11 R/W-0 PCFG10 R/W-0 PCFG9 R/W-0(1) PCFG8 bit 8 R/W-0 PCFG0 bit 0
R/W-0 PCFG14
PCFG15: A/D Input Band Gap Reference Enable bit 1 = Internal band gap (VBG) reference channel is disabled 0 = Internal band gap reference channel is enabled PCFG14: A/D Input Half Band Gap Reference Enable bit 1 = Internal half band gap (VBG/2) reference channel is disabled 0 = Internal half band gap reference channel is enabled PCFG13: A/D Input Voltage Regulator Output Reference Enable bit 1 = Internal voltage regulator output (VDDCORE) reference channel is disabled 0 = Internal voltage regulator output reference channel is enabled PCFG<12:0>: Analog Input Pin Configuration Control bits(1) 1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read is enabled 0 = Pin is configured in Analog mode; I/O port read is disabled, A/D samples pin voltage Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding bits set.
bit 14
bit 13
bit 12-0
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 265
PIC24FJ64GB004 FAMILY
REGISTER 22-6:
R/W-0 CSSL15 bit 15 R/W-0 CSSL7 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 CSSL6 R/W-0 CSSL5 R/W-0 CSSL4 R/W-0 CSSL3 R/W-0 CSSL2 R/W-0 CSSL1
AD1CSSL: A/D INPUT SCAN SELECT REGISTER
R/W-0 CSSL13 R/W-0(1) CSSL12 R/W-0 CSSL11 R/W-0 CSSL10 R/W-0 CSSL9 R/W-0 CSSL8(1) bit 8 R/W-0 CSSL0 bit 0
R/W-0 CSSL14
CSSL15: A/D Input Band Gap Scan Enable bit 1 = Internal band gap (VBG) channel is enabled for input scan 0 = Analog channel is disabled from input scan CSSL14: A/D Input Half Band Gap Scan Enable bit 1 = Internal half band gap (VBG/2) channel is enabled for input scan 0 = Analog channel is disabled from input scan CSSL13: A/D Input Voltage Regulator Output Scan Enable bit 1 = Internal voltage regulator output (VDDCORE) is enabled for input scan 0 = Analog channel is disabled from input scan CSSL<12:0>: A/D Input Pin Scan Selection bits(1) 1 = Corresponding analog channel is selected for input scan 0 = Analog channel is omitted from input scan Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding bits cleared.
bit 14
bit 13
bit 12-0
Note 1:
DS39940D-page 266
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
EQUATION 22-1: A/D CONVERSION CLOCK PERIOD(1)
ADCS = TAD -1 TCY
TAD = TCY * (ADCS + 1)
Note 1:
Based on TCY = 2 * TOSC, Doze mode and PLL are disabled.
FIGURE 22-2:
10-BIT A/D CONVERTER ANALOG INPUT MODEL
VDD ANx VT = 0.6V RIC 250 Sampling Switch RSS CHOLD = ADC capacitance = 4.4 pF (Typical) VSS RSS 5 k(Typical)
Rs VA
CPIN 6-11 pF (Typical)
VT = 0.6V
ILEAKAGE 500 nA
Legend: CPIN = Input Capacitance = Threshold Voltage VT ILEAKAGE = Leakage Current at the pin due to various junctions = Interconnect Resistance RIC = Sampling Switch Resistance RSS = Sample/Hold Capacitance (from DAC) CHOLD
Note: CPIN value depends on device package and is not tested. The effect of CPIN is negligible if Rs 5 k.
2010 Microchip Technology Inc.
DS39940D-page 267
PIC24FJ64GB004 FAMILY
FIGURE 22-3:
Output Code (Binary (Decimal))
A/D TRANSFER FUNCTION
11 1111 1111 (1023) 11 1111 1110 (1022)
10 0000 0011 (515) 10 0000 0010 (514) 10 0000 0001 (513) 10 0000 0000 (512) 01 1111 1111 (511) 01 1111 1110 (510) 01 1111 1101 (509)
00 0000 0001 (1) 00 0000 0000 (0) 1023*(VR+ - VR-) 512*(VR+ - VR-) (VINH - VINL) VR+ - VRVR+ 1024 0 VR-
1024
Voltage Level
VR- +
VR- +
1024
DS39940D-page 268
2010 Microchip Technology Inc.
VR- +
PIC24FJ64GB004 FAMILY
23.0
Note:
TRIPLE COMPARATOR MODULE
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the associated "PIC24F Family Reference Manual", Section 46. "Scalable Comparator Module" (DS39734).
The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals `1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin. A simplified block diagram of the module in shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2. Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators are provided in the CMSTAT register (Register 23-2).
The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as voltage reference inputs from the voltage reference generator and band gap reference.
FIGURE 23-1:
CCH<1:0> CREF
TRIPLE COMPARATOR MODULE BLOCK DIAGRAM
EVPOL<1:0> Trigger/Interrupt Logic CEVT COE
CPOL VINCXINB CXINC CXIND CVREFVIN+ Input Select Logic C1
COUT
C1OUT Pin
EVPOL<1:0> Trigger/Interrupt Logic CEVT COE
CPOL VINVIN+ C2
COUT
C2OUT Pin
CXINA CVREF+ VINVIN+ C3
EVPOL<1:0> Trigger/Interrupt Logic CEVT COE
CPOL
COUT
C3OUT Pin
2010 Microchip Technology Inc.
DS39940D-page 269
PIC24FJ64GB004 FAMILY
FIGURE 23-2: INDIVIDUAL COMPARATOR CONFIGURATIONS
Comparator Off CEN = 0, CREF = x, CCH<1:0> = xx
VINVIN+ COE
Cx
Off (Read as `0')
CxOUT Pin
Comparator CxINB > CxINA Compare CEN = 1, CREF = 0, CCH<1:0> = 00 CXINB CXINA
VINVIN+ COE
Comparator CxINC > CxINA Compare CEN = 1, CREF = 0, CCH<1:0> = 01 CXINC
CxOUT Pin VINVIN+ COE
Cx
CXINA
Cx
CxOUT Pin
Comparator CxIND > CxINA Compare CEN = 1, CREF = 0, CCH<1:0> = 10 CXIND CXINA
VINVIN+ COE
Comparator CVREF- > CxINA Compare CEN = 1, CREF = 0, CCH<1:0> = 11 CVREFCxOUT Pin VINVIN+ COE
Cx
CXINA
Cx
CxOUT Pin
Comparator CxINB > CVREF+ Compare CEN = 1, CREF = 1, CCH<1:0> = 00 CXINB CVREF+
VINVIN+ COE
Comparator CxINC > CVREF+ Compare CEN = 1, CREF = 1, CCH<1:0> = 01 CXINC
CxOUT Pin VINVIN+ COE
Cx
CVREF+
Cx
CxOUT Pin
Comparator CxIND > CVREF+ Compare CEN = 1, CREF = 1, CCH<1:0> = 10 CXIND CVREF+
VINVIN+ COE
Comparator CVREF- > CVREF+ Compare CEN = 1, CREF = 1, CCH<1:0> = 11 CVREFCxOUT Pin VINVIN+ COE
Cx
CVREF+
Cx
CxOUT Pin
DS39940D-page 270
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 23-1:
R/W-0 CEN bit 15 R/W-0 EVPOL1 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 EVPOL0 U-0 -- R/W-0 CREF U-0 -- U-0 -- R/W-0 CCH1
CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)
R/W-0 CPOL U-0 -- U-0 -- U-0 -- R/W-0 CEVT R-0 COUT bit 8 R/W-0 CCH0 bit 0 COE
R/W-0
CEN: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin. 0 = Comparator output is internal only CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted Unimplemented: Read as `0' CEVT: Comparator Event bit 1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared 0 = Comparator event has not occurred COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1: 1 = VIN+ < VIN0 = VIN+ > VINEVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated on transition of the comparator output: If CPOL = 0 (non-inverted polarity): High-to-low transition only. If CPOL = 1 (inverted polarity): Low-to-high transition only. 01 = Trigger/event/interrupt generated on transition of comparator output: If CPOL = 0 (non-inverted polarity): Low-to-high transition only. If CPOL = 1 (inverted polarity): High-to-low transition only. 00 = Trigger/event/interrupt generation is disabled Unimplemented: Read as `0'
bit 14
bit 13
bit 12-10 bit 9
bit 8
bit 7-6
bit 5
2010 Microchip Technology Inc.
DS39940D-page 271
PIC24FJ64GB004 FAMILY
REGISTER 23-1:
bit 4
CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)
CREF: Comparator Reference Select bits (non-inverting input) 1 = Non-inverting input connects to internal CVREF+ input reference voltage 0 = Non-inverting input connects to CxINA pin Unimplemented: Read as `0' CCH<1:0>: Comparator Channel Select bits 11 = Inverting input of comparator connects to CVREF- input reference voltage 10 = Inverting input of comparator connects to CxIND pin 01 = Inverting input of comparator connects to CxINC pin 00 = Inverting input of comparator connects to CxINB pin
bit 3-2 bit 1-0
REGISTER 23-2:
R/W-0 CMIDL bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15
CMSTAT: COMPARATOR MODULE STATUS REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- R-0 C3EVT R-0 C2EVT R-0 C1EVT bit 8 U-0 -- U-0 -- U-0 -- U-0 -- R-0 C3OUT R-0 C2OUT R-0 C1OUT bit 0
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
CMIDL: Comparator Stop in Idle Mode bit 1 = Discontinue operation of all comparators when device enters Idle mode 0 = Continue operation of all enabled comparators in Idle mode Unimplemented: Read as `0' C3EVT: Comparator 3 Event Status bit (read-only) Shows the current event status of Comparator 3 (CM3CON<9>). C2EVT: Comparator 2 Event Status bit (read-only) Shows the current event status of Comparator 2 (CM2CON<9>). C1EVT: Comparator 1 Event Status bit (read-only) Shows the current event status of Comparator 1 (CM1CON<9>). Unimplemented: Read as `0' C3OUT: Comparator 3 Output Status bit (read-only) Shows the current output of Comparator 3 (CM3CON<8>). C2OUT: Comparator 2 Output Status bit (read-only) Shows the current output of Comparator 2 (CM2CON<8>). C1OUT: Comparator 1 Output Status bit (read-only) Shows the current output of Comparator 1 (CM1CON<8>).
bit 14-11 bit 10 bit 9 bit 8 bit 7-3 bit 2 bit 1 bit 0
DS39940D-page 272
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
24.0
Note:
COMPARATOR VOLTAGE REFERENCE
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Voltage Reference Module" (DS39709).
voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>). The settling time of the comparator voltage reference must be considered when changing the CVREF output.
24.1
Configuring the Comparator Voltage Reference
The voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides two ranges of output
FIGURE 24-1:
VREF+ AVDD
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
CVRSS = 1
CVRSS = 0
8R R R R
CVR<3:0> CVREFP
CVREN
VREF+
1 CVREF+
16 Steps
16-to-1 MUX
R
0
CVREF
R R R CVRR VREFCVRSS = 1
CVROE CVREFM<1:0> 8R VREF+ VBG/6 11 10 01 00 CVREF-
CVRSS = 0 AVSS
VBG VBG/2
2010 Microchip Technology Inc.
DS39940D-page 273
PIC24FJ64GB004 FAMILY
REGISTER 24-1:
U-0 -- bit 15 R/W-0 CVREN bit 7 Legend: R = Readable bit -n = Value at POR bit 15-11 bit 10 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 CVROE R/W-0 CVRR R/W-0 CVRSS R/W-0 CVR3 R/W-0 CVR2 R/W-0 CVR1
CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 CVREFP R/W-0 CVREFM1 R/W-0 CVREFM0 bit 8 R/W-0 CVR0 bit 0
Unimplemented: Read as `0' CVREFP: CVREF+ Reference Output Select bit 1 = Use VREF+ input pin as CVREF+ reference output to comparators 0 = Use comparator voltage reference module's generated output as CVREF+ reference output to comparators CVREFM<1:0>: CVREF- Reference Output Select bits 11 = Use VREF+ input pin as CVREF- reference output to comparators 10 = Use VBG/6 as CVREF- reference output to comparators 01 = Use VBG as CVREF- reference output to comparators 00 = Use VBG/2 as CVREF- reference output to comparators CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit is powered on 0 = CVREF circuit is powered down CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on CVREF pin 0 = CVREF voltage level is disconnected from CVREF pin CVRR: Comparator VREF Range Selection bit 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = VREF+ - VREF0 = Comparator reference source, CVRSRC = AVDD - AVSS CVR<3:0>: Comparator VREF Value Selection (0 CVR<3:0> 15) bits When CVRR = 1: CVREF = (CVR<3:0>/24) (CVRSRC) When CVRR = 0: CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)
bit 9-8
bit 7
bit 6
bit 5
bit 4
bit 3-0
DS39940D-page 274
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
25.0
Note:
CHARGE TIME MEASUREMENT UNIT (CTMU)
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the associated "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724).
25.1
Measuring Capacitance
The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship: i=C* dV dT
The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include: * * * * * * Four edge input trigger sources Polarity control for each edge source Control of edge sequence Control of response to edges Time measurement resolution of 1 nanosecond Accurate current source suitable for capacitive measurement
For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application. Figure 25-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual".
Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module and controls edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.
FIGURE 25-1:
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT
PIC24F Device Timer1 CTMU EDG1 EDG2 Output Pulse A/D Converter Current Source
ANx ANY
CAPP
RPR
2010 Microchip Technology Inc.
DS39940D-page 275
PIC24FJ64GB004 FAMILY
25.2 Measuring Time 25.3 Pulse Generation and Delay
Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. For the smallest time measurements, select the internal A/D Channel 31, CH0S<4:0> = 11111. This minimizes any stray capacitance that may otherwise be associated with using an input pin, thus keeping the total capacitance to that of the A/D Converter itself (4-5 pF). A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual". The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point. Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "PIC24F Family Reference Manual".
FIGURE 25-2:
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT
PIC24F Device CTMU CTEDG1 CTEDG2 EDG1 EDG2 Output Pulse ANx RPR A/D Converter CAD Current Source
FIGURE 25-3:
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION
PIC24F Device CTEDG1 EDG1 CTMU CTPLS
Current Source Comparator C2INB CDELAY CVREF C2
DS39940D-page 276
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 25-1:
R/W-0 CTMUEN bit 15 R/W-0 EDG2POL bit 7 Legend: R = Readable bit -n = Value at POR bit 15 W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown R/W-0 EDG2SEL1 R/W-0 EDG2SEL0 R/W-0 EDG1POL R/W-0 EDG1SEL1 R/W-0 EDG1SEL0 R/W-0 EDG2STAT
CTMUCON: CTMU CONTROL REGISTER
U-0 -- R/W-0 CTMUSIDL R/W-0 TGEN
(1)
R/W-0 EDGEN
R/W-0 EDGSEQEN
R/W-0 IDISSEN
R/W-0 CTTRIG bit 8 R/W-0 EDG1STAT bit 0
CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled Unimplemented: Read as `0' CTMUSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode TGEN: Time Generation Enable bit(1) 1 = Enables edge delay generation 0 = Disables edge delay generation EDGEN: Edge Enable bit 1 = Edges are not blocked 0 = Edges are blocked EDGSEQEN: Edge Sequence Enable bit 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed IDISSEN: Analog Current Source Control bit 1 = Analog current source output is grounded 0 = Analog current source output is not grounded CTTRIG: Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 programmed for a positive edge response 0 = Edge 2 programmed for a negative edge response EDG2SEL<1:0>: Edge 2 Source Select bits 11 = CTED1 pin 10 = CTED2 pin 01 = OC1 module 00 = Timer1 module EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 programmed for a positive edge response 0 = Edge 1 programmed for a negative edge response If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
bit 14 bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6-5
bit 4
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 277
PIC24FJ64GB004 FAMILY
REGISTER 25-1:
bit 3-2
CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
EDG1SEL<1:0>: Edge 1 Source Select bits 11 = CTED1 pin 10 = CTED2 pin 01 = OC1 module 00 = Timer1 module EDG2STAT: Edge 2 Status bit 1 = Edge 2 event has occurred 0 = Edge 2 event has not occurred EDG1STAT: Edge 1 Status bit 1 = Edge 1 event has occurred 0 = Edge 1 event has not occurred If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
bit 1
bit 0
Note 1:
REGISTER 25-2:
R/W-0 ITRIM5 bit 15 U-0 -- bit 7 Legend: R = Readable bit -n = Value at POR bit 15-10
CTMUICON: CTMU CURRENT CONTROL REGISTER
R/W-0 ITRIM3 R/W-0 ITRIM2 R/W-0 ITRIM1 R/W-0 ITRIM0 R/W-0 IRNG1 R/W-0 IRNG0 bit 8 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- bit 0
R/W-0 ITRIM4
W = Writable bit `1' = Bit is set
U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 ..... 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current ..... 100010 100001 = Maximum negative change from nominal current IRNG<1:0>: Current Source Range Select bits 11 = 100 Base Current 10 = 10 Base Current 01 = Base current level (0.55 A nominal) 00 = Current source disabled Unimplemented: Read as `0'
bit 9-8
bit 7-0
DS39940D-page 278
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
26.0
Note:
SPECIAL FEATURES
This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "PIC24F Family Reference Manual": * Section 9. "Watchdog Timer (WDT)" (DS39697) * Section 32. "High-Level Device Integration" (DS39719) * Section 33. "Programming and Diagnostics" (DS39716)
26.1.1
CONSIDERATIONS FOR CONFIGURING PIC24FJ64GB004 FAMILY DEVICES
PIC24FJ64GB004 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: * * * * * * Flexible Configuration Watchdog Timer (WDT) Code Protection JTAG Boundary Scan Interface In-Circuit Serial Programming In-Circuit Emulation
In PIC24FJ64GB004 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 26-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets. Note: Configuration data is reloaded on all types of device Resets.
When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled. The upper byte of all Flash Configuration Words in program memory should always be `1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing `1's to these locations has no effect on device operation. Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.
26.1
Configuration Bits
The Configuration bits can be programmed (read as `0'), or left unprogrammed (read as `1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-6. Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh) which can only be accessed using table reads and table writes.
TABLE 26-1:
FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ64GB004 FAMILY DEVICES
Configuration Word Addresses 1 57FEh ABFEh 2 57FCh ABFCh 3 57FAh ABFAh 4 57F8h ABF8h
Device PIC24FJ32GB00X PIC24FJ64GB00X
2010 Microchip Technology Inc.
DS39940D-page 279
PIC24FJ64GB004 FAMILY
REGISTER 26-1:
U-1 -- bit 23 r-x r bit 15 R/PO-1 FWDTEN bit 7 Legend: R = Readable bit r = Reserved bit PO = Program Once bit U = Unimplemented bit, read as `0' `1' = Bit is set `0' = Bit is cleared R/PO-1 WINDIS U-1 -- R/PO-1 FWPSA R/PO-1 WDTPS3 R/PO-1 WDTPS2 R/PO-1 WDTPS1 R/PO-1 JTAGEN(1) R/PO-1 GCP R/PO-1 GWRP R/PO-1 DEBUG U-1 -- R/PO-1 ICS1
CW1: FLASH CONFIGURATION WORD 1
U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- bit 16 R/PO-1 ICS0 bit 8 R/PO-1 WDTPS0 bit 0
-n = Value when device is unprogrammed bit 23-16 bit 15 bit 14 Unimplemented: Read as `1'
Reserved: The value is unknown; program as `0' JTAGEN: JTAG Port Enable bit(1) 1 = JTAG port is enabled 0 = JTAG port is disabled GCP: General Segment Program Memory Code Protection bit 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space GWRP: General Segment Code Flash Write Protection bit 1 = Writes to program memory are allowed 0 = Writes to program memory are disabled DEBUG: Background Debugger Enable bit 1 = Device resets into Operational mode 0 = Device resets into Debug mode Unimplemented: Read as `1' ICS<1:0>: Emulator Pin Placement Select bits 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use FWDTEN: Watchdog Timer Enable bit 1 = Watchdog Timer is enabled 0 = Watchdog Timer is disabled WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be `1' Unimplemented: Read as `1' FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32 The JTAGEN bit can only be modified using In-Circuit Serial ProgrammingTM (ICSPTM). It cannot be modified while connected through the JTAG interface.
bit 13
bit 12
bit 11
bit 10 bit 9-8
bit 7
bit 6
bit 5 bit 4
Note 1:
DS39940D-page 280
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 26-1:
bit 3-0
CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)
WDTPS<3:0>: Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1 The JTAGEN bit can only be modified using In-Circuit Serial ProgrammingTM (ICSPTM). It cannot be modified while connected through the JTAG interface.
Note 1:
2010 Microchip Technology Inc.
DS39940D-page 281
PIC24FJ64GB004 FAMILY
REGISTER 26-2:
U-1 -- bit 23 R/PO-1 IESO bit 15 R/PO-1 FCKSM1 bit 7
CW2: FLASH CONFIGURATION WORD 2
U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- bit 16 R/PO-1 FNOSC0 bit 8 R/PO-1 POSCMD0 bit 0
R/PO-1 PLLDIV2
R/PO-1 PLLDIV1
R/PO-1 PLLDIV0
R/PO-1 PLL96MHZ
R/PO-1 FNOSC2
R/PO-1 FNOSC1
R/PO-1 FCKSM0
R/PO-1 OSCIOFCN
R/PO-1 IOL1WAY
U-1 --
R/PO-1 I2C1SEL
R/PO-1 POSCMD1
Legend: R = Readable bit PO = Program Once bit -n = Value when device is unprogrammed bit 23-16 bit 15
U = Unimplemented bit, read as `0' `1' = Bit is set `0' = Bit is cleared
bit 14-12
bit 11
bit 10-8
bit 7-6
bit 5
Unimplemented: Read as `1' IESO: Internal External Switchover bit 1 = IESO mode (Two-Speed Start-up) is enabled 0 = IESO mode (Two-Speed Start-up) is disabled PLLDIV<2:0>: USB 96 MHz PLL Prescaler Select bits 111 = Oscillator input divided by 12 (48 MHz input) 110 = Oscillator input divided by 8 (32 MHz input) 101 = Oscillator input divided by 6 (24 MHz input) 100 = Oscillator input divided by 5 (20 MHz input) 011 = Oscillator input divided by 4 (16 MHz input) 010 = Oscillator input divided by 3 (12 MHz input) 001 = Oscillator input divided by 2 (8 MHz input) 000 = Oscillator input used directly (4 MHz input) PLL96MHZ: USB 96 MHz PLL Start-up Enable bit 1 = 96 MHz PLL is enabled automatically on start-up 0 = 96 MHz PLL is enabled by user in software (controlled with the PLLEN bit in CLKDIV<5>) FNOSC<2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RA3 functions as CLKO (FOSC/2) 0 = OSCO/CLKO/RA3 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RA3.
DS39940D-page 282
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 26-2:
bit 4
CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)
bit 3 bit 2
bit 1-0
IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed Unimplemented: Read as `1' I2C1SEL: I2C1 Pin Select bit 1 = Use default SCL1/SDA1 pins 0 = Use alternate SCL1/SDA1 pins POSCMD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = EC Oscillator mode is selected
2010 Microchip Technology Inc.
DS39940D-page 283
PIC24FJ64GB004 FAMILY
REGISTER 26-3:
U-1 -- bit 23 R/PO-1 WPEND bit 15 U-1 -- bit 7 Legend: R = Readable bit PO = Program Once bit -n = Value when device is unprogrammed bit 23-16 bit 15
CW3: FLASH CONFIGURATION WORD 3
U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- bit 16
R/PO-1 WPCFG
R/PO-1 WPDIS
U-1 --
R/PO-1 WUTSEL1
R/PO-1 WUTSEL0
R/PO-1 R/PO-1 (1) SOSCSEL0(1) SOSCSEL1 bit 8 R/PO-1 WPFP1 R/PO-1 WPFP0 bit 0
U-1 --
R/PO-1 WPFP5
R/PO-1 WPFP4
R/PO-1 WPFP3
R/PO-1 WPFP2
U = Unimplemented bit, read as `0' `1' = Bit is set `0' = Bit is cleared
bit 14
bit 13
bit 12 bit 11-10
bit 9-8
bit 7-6 bit 5-0
Unimplemented: Read as `1' WPEND: Segment Write Protection End Page Select bit 1 = Protected code segment lower boundary is at the bottom of program memory (000000h); upper boundary is the code page specified by WPFP<8:0> 0 = Protected code segment upper boundary is at the last page of program memory; lower boundary is the code page specified by WPFP<8:0> WPCFG: Configuration Word Code Page Protection Select bit 1 = Last page (at the top of program memory) and Flash Configuration Words are not protected 0 = Last page and Flash Configuration Words are code-protected WPDIS: Segment Write Protection Disable bit 1 = Segmented code protection is disabled 0 = Segmented code protection is enabled; protected segment is defined by WPEND, WPCFG and WPFPx Configuration bits Unimplemented: Read as `1' WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits 11 = Default regulator start-up time is used 01 = Fast regulator start-up time is used x0 = Reserved; do not use SOSCSEL<1:0>: Secondary Oscillator Power Mode Select bits(1) 11 = SOSC pins are in default (high drive strength) oscillator mode 01 = SOSC pins are in Low-Power (low drive strength) Oscillator mode 00 = SOSC pins have digital I/O functions (RA4, RB4); SCLKI can be used 10 = Reserved Unimplemented: Read as `1' WPFP<5:0>: Protected Code Segment Boundary Page bits Designates the 512 instruction page that is the boundary of the protected code segment, starting with Page 9 at the bottom of program memory. If WPEND = 1: Last address of designated code page is the upper boundary of the segment. If WPEND = 0: First address of designated code page is the lower boundary of the segment. Digital functions on the SOSCI and SOSCO pins are only available when configured in Digital I/O mode (`00').
Note 1:
DS39940D-page 284
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
REGISTER 26-4:
U-1 -- bit 23 U-1 -- bit 15 R/PO-1 DSWDTEN bit 7 Legend: R = Readable bit PO = Program Once bit U = Unimplemented bit, read as `0' `1' = Bit is set `0' = Bit is cleared -n = Value when device is unprogrammed bit 23-8 bit 7 Unimplemented: Read as `1' DSWDTEN: Deep Sleep Watchdog Timer Enable bit 1 = DSWDT is enabled 0 = DSWDT is disabled DSBOREN: Deep Sleep BOR Enable bit 1 = BOR is enabled in Deep Sleep 0 = BOR is disabled in Deep Sleep (does not affect Sleep mode) RTCOSC: RTCC Reference Clock Select bit 1 = RTCC uses SOSC as reference clock 0 = RTCC uses LPRC as reference clock DSWDTOSC: DSWDT Reference Clock Select bit 1 = DSWDT uses LPRC as reference clock 0 = DSWDT uses SOSC as reference clock DSWDTPS<3:0>: DSWDT Postscale select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1100 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0101 = 1:2,048 (2.1 seconds) 0100 = 1:512 (528 ms) 0011 = 1:128 (132 ms) 0010 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms) R/PO-1 DSBOREN R/PO-1 RTCOSC R/PO-1 R/PO-1 R/PO-1 R/PO-1 U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 --
CW4: FLASH CONFIGURATION WORD 4
U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- U-1 -- bit 16 U-1 -- bit 8 R/PO-1 bit 0
DSWDTOSC DSWDTPS3 DSWDTPS2 DSWDTPS1 DSWDTPS0
bit 6
bit 5
bit 4
bit 3-0
2010 Microchip Technology Inc.
DS39940D-page 285
PIC24FJ64GB004 FAMILY
REGISTER 26-5:
U -- bit 23 R FAMID7 bit 15 R DEV7 bit 7
DEVID: DEVICE ID REGISTER
U -- U -- U -- U -- U -- U -- U -- bit 16 R FAMID0 bit 8 R DEV0 bit 0
R FAMID6
R FAMID5
R FAMID4
R FAMID3
R FAMID2
R FAMID1
R DEV6
R DEV5
R DEV4
R DEV3
R DEV2
R DEV1
Legend: R = Read-Only bit bit 23-16 bit 15-8 bit 7-0 Unimplemented: Read as `1' FAMID<7:0>: Device Family Identifier bits 01000010 = PIC24FJ64GB004 family DEV<7:0>: Individual Device Identifier bits 00000011 = PIC24FJ32GB002 00000111 = PIC24FJ64GB002 00001011 = PIC24FJ32GB004 00001111 = PIC24FJ64GB004
U = Unimplemented bit
REGISTER 26-6:
U -- bit 23 U -- bit 15 U -- bit 7
DEVREV: DEVICE REVISION REGISTER
U -- U -- U -- U -- U -- U -- U -- bit 16 U -- bit 8 U -- U -- U -- R REV3 R REV2 R REV1 R REV0 bit 0
U --
U --
U --
U --
U --
U --
Legend: R = Read-only bit bit 23-4 bit 3-0
U = Unimplemented bit
Unimplemented: Read as `0' REV<3:0>: Minor Revision Identifier bits Encodes revision number of the device (sequential number only; no major/minor fields).
DS39940D-page 286
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
26.2 On-Chip Voltage Regulator
FIGURE 26-1:
All PIC24FJ64GB004 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ64GB004 family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator is controlled by the DISVREG pin. Tying VSS to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the Filter Capacitor (CEFC) is provided in Section 29.1 "DC Characteristics". If DISVREG is tied to VDD, the regulator is disabled. In this case, separate power for the core logic, at a nominal 2.5V, must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 26-1 for possible configurations.
CONNECTIONS FOR THE ON-CHIP REGULATOR
3.3V PIC24FJ64GB004 VDD DISVREG VDDCORE/VCAP
Regulator Enabled (DISVREG tied to VSS):
CEFC (10 F typ)
VSS
Regulator Disabled (DISVREG tied to VDD): 2.5V(1) 3.3V(1) PIC24FJ64GB004 VDD DISVREG VDDCORE/VCAP VSS
26.2.1
VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION
Regulator Disabled (VDD tied to VDDCORE): 2.5V(1) PIC24FJ64GB004 VDD DISVREG VDDCORE/VCAP VSS
When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic. The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 100 mV. When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a Low-Power Operational mode or trigger an orderly shutdown. Low-Voltage Detection is only available when the regulator is enabled.
Note 1:
These are typical operating voltages. Refer to Section 29.1 "DC Characteristics" for the full operating ranges of VDD and VDDCORE.
26.2.2
ON-CHIP REGULATOR AND POR
When the voltage regulator is enabled, it takes approximately 10 s for it to generate output. During this time, designated as TPM, code execution is disabled. TPM is applied every time the device resumes operation after any power-down, including Sleep mode. TPM is determined by the setting of the PMSLP bit (RCON<8>) and the WUTSEL Configuration bits (CW3<11:10>). Note: For more information on TPM, see Section 29.0 "Electrical Characteristics".
If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of 64 ms nominal delay at device start-up (POR or BOR only).
2010 Microchip Technology Inc.
DS39940D-page 287
PIC24FJ64GB004 FAMILY
When waking up from Sleep mode with the regulator disabled, TPM is used to determine the wake-up time. To decrease the device wake-up time when operating with the regulator disabled, the PMSLP bit can be set.
26.3
Watchdog Timer (WDT)
For PIC24FJ64GB004 family devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode. A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset: * On any device Reset * On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor) * When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered) * When the device exits Sleep or Idle mode to resume normal operation * By a CLRWDT instruction during normal execution If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software. Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.
26.2.3
ON-CHIP REGULATOR AND BOR
When the on-chip regulator is enabled, PIC24FJ64GB004 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the tracking level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage specifications are provided in Section 29.0 "Electrical Characteristics".
26.2.4
POWER-UP REQUIREMENTS
The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts. Note: For more information, see Section 29.0 "Electrical Characteristics".
26.2.5
VOLTAGE REGULATOR STANDBY MODE
When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator automatically places itself into Standby mode whenever the device goes into Sleep mode by removing power from the Flash program memory. This feature is controlled by the PMSLP bit (RCON<8>). By default, this bit is cleared, which enables Standby mode. For PIC24FJ64GB004 family devices, the time required for regulator wake-up from Standby mode is controlled by the WUTSEL<1:0> Configuration bits (CW3<11:10>). The default wake-up time for all devices is 190 s, which is a Legacy mode provided to match older PIC24F device wake-up times. Implementing the WUTSEL Configuration bits provides a fast wake-up option. When WUTSEL<1:0> = 01, the regulator wake-up time is TPM, 10 s. When the regulator's Standby mode is turned off (PMSLP = 1), Flash program memory stays powered in Sleep mode. That enables device wake-up without waiting for TPM. With PMSLP set, however, the power consumption, while in Sleep mode, will be approximately 40 A higher than what it would be if the regulator was allowed to enter Standby mode.
DS39940D-page 288
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
26.3.1 WINDOWED OPERATION 26.3.2 CONTROL REGISTER
The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction is executed before that window causes a WDT Reset; this is similar to a WDT time-out. Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to `0'. The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled. The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to `0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The WDT software option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings.
FIGURE 26-2:
SWDTEN FWDTEN
WDT BLOCK DIAGRAM
LPRC Control FWPSA Prescaler (5-bit/7-bit) 31 kHz 1 ms/4 ms WDT Counter WDTPS<3:0> Postscaler 1:1 to 1:32.768 WDT Overflow Reset Wake From Sleep
LPRC Input
All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode CLRWDT Instr. PWRSAV Instr. Sleep or Idle Mode
26.4
Deep Sleep Watchdog Timer (DSWDT)
26.5
Program Verification and Code Protection
PIC24FJ64GB004 family devices have both a WDT module and a DSWDT module. The latter runs, if enabled, when a device is in Deep Sleep and is driven by either the SOSC or LPRC Oscillator. The clock source is selected by the DSWDTOSC (CW4<4>) Configuration bit. The DSWDT can be configured to generate a time-out at 2.1 ms to 25.7 days by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (CW4<3:0>). When the DSWDT is enabled, the clock source is also enabled. DSWDT is one of the sources that can wake the device from Deep Sleep mode.
PIC24FJ64GB004 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.
26.5.1
GENERAL SEGMENT PROTECTION
For all devices in the PIC24FJ64GB004 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode. Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to `0', internal write and erase operations to program memory are blocked.
2010 Microchip Technology Inc.
DS39940D-page 289
PIC24FJ64GB004 FAMILY
26.5.2 CODE SEGMENT PROTECTION
In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of erase and write-protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in the PIC24FJ64GB004 family devices can be located by the user anywhere in the program space and configured in a wide range of sizes. Code segment protection provides an added level of protection to a designated area of program memory, by disabling the NVM safety interlock, whenever a write or erase address falls within a specified range. It does not override General Segment protection controlled by the GCP or GWRP bits. For example, if GCP and GWRP are enabled, enabling segmented code protection for the bottom half of program memory does not undo General Segment protection for the top half. The size and type of protection for the segmented code range are configured by the WPFPx, WPEND, WPCFG and WPDIS bits in Configuration Word 3. Code segment protection is enabled by programming the WPDIS bit (= 0). The WPFP bits specify the size of the segment to be protected by specifying the 512-word code page that is the start or end of the protected segment. The specified region is inclusive, therefore, this page will also be protected. The WPEND bit determines if the protected segment uses the top or bottom of the program space as a boundary. Programming WPEND (= 0) sets the bottom of program memory (000000h) as the lower boundary of the protected segment. Leaving WPEND unprogrammed (= 1) protects the specified page through the last page of implemented program memory, including the Configuration Word locations. A separate bit, WPCFG, is used to independently protect the last page of program space, including the Flash Configuration Words. Programming WPCFG (= 0) protects the last page, regardless of the other bit settings. This may be useful in circumstances where write protection is needed for both a code segment in the bottom of memory, as well as the Flash Configuration Words. The various options for segment code protection are shown in Table 26-2.
26.5.3
CONFIGURATION REGISTER PROTECTION
The Configuration registers are protected against inadvertent or unwanted changes, or reads in two ways. The primary protection method is the same as that of the RP registers - shadow registers contain a complimentary value which is constantly compared with the actual value. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset. The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate code cement protection setting.
TABLE 26-2:
WPDIS 1 1 0
SEGMENT CODE PROTECTION CONFIGURATION OPTIONS
WPCFG 1 0 0 Write/Erase Protection of Code Segment No additional protection enabled; all program memory protection is configured by GCP and GWRP Last code page protected, including Flash Configuration Words Addresses from the first address of code page, defined by WPFP<5:0> through the end of implemented program memory (inclusive), are protected, including Flash Configuration Words Address, 000000h, through the last address of code page, defined by WPFP<5:0> (inclusive) is protected Addresses from first address of code page, defined by WPFP<5:0> through the end of implemented program memory (inclusive), are protected, including Flash Configuration Words Addresses from first address of code page, defined by WPFP<5:0> through the end of implemented program memory (inclusive), are protected
Segment Configuration Bits WPEND x x 1
0 0
0 1
0 1
0
0
1
DS39940D-page 290
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
26.6 JTAG Interface 26.8 In-Circuit Debugger
PIC24FJ64GB004 family devices implement a JTAG interface, which supports boundary scan device testing. When MPLAB(R) ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins. To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.
26.7
In-Circuit Serial Programming
PIC24FJ64GB004 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
2010 Microchip Technology Inc.
DS39940D-page 291
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 292
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
27.0 DEVELOPMENT SUPPORT
27.1
The PIC(R) microcontrollers and dsPIC(R) digital signal controllers are supported with a full range of software and hardware development tools: * Integrated Development Environment - MPLAB(R) IDE Software * Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C for Various Device Families - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families * Simulators - MPLAB SIM Software Simulator * Emulators - MPLAB REAL ICETM In-Circuit Emulator * In-Circuit Debuggers - MPLAB ICD 3 - PICkitTM 3 Debug Express * Device Programmers - PICkitTM 2 Programmer - MPLAB PM3 Device Programmer * Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits
MPLAB Integrated Development Environment Software
The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows(R) operating system-based application that contains: * A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) * A full-featured editor with color-coded context * A multiple project manager * Customizable data windows with direct edit of contents * High-level source code debugging * Mouse over variable inspection * Drag and drop variables from source to watch windows * Extensive on-line help * Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: * Edit your source files (either C or assembly) * One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) * Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.
2010 Microchip Technology Inc.
DS39940D-page 293
PIC24FJ64GB004 FAMILY
27.2 MPLAB C Compilers for Various Device Families 27.5 MPLINK Object Linker/ MPLIB Object Librarian
The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: * Efficient linking of single libraries instead of many smaller files * Enhanced code maintainability by grouping related modules together * Flexible creation of libraries with easy module listing, replacement, deletion and extraction
27.3
HI-TECH C for Various Device Families
The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.
27.6
MPLAB Assembler, Linker and Librarian for Various Device Families
27.4
MPASM Assembler
The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel(R) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: * Integration into MPLAB IDE projects * User-defined macros to streamline assembly code * Conditional assembly for multi-purpose source files * Directives that allow complete control over the assembly process
MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: * * * * * * Support for the entire device instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility
DS39940D-page 294
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
27.7 MPLAB SIM Software Simulator 27.9
The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC(R) DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.
MPLAB ICD 3 In-Circuit Debugger System
MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC(R) Flash microcontrollers and dsPIC(R) DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.
27.8
MPLAB REAL ICE In-Circuit Emulator System
27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and programming of PIC(R) and dsPIC(R) Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial ProgrammingTM. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.
MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC(R) Flash MCUs and dsPIC(R) Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ-11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.
2010 Microchip Technology Inc.
DS39940D-page 295
PIC24FJ64GB004 FAMILY
27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express
The PICkitTM 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows(R) programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkitTM 2 enables in-circuit debugging on most PIC(R) microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified. The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.
27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEMTM and dsPICDEMTM demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ(R) security ICs, CAN, IrDA(R), PowerSmart battery management, SEEVAL(R) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.
27.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSPTM cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.
DS39940D-page 296
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
28.0
Note:
INSTRUCTION SET SUMMARY
This chapter is a brief summary of the PIC24F instruction set architecture, and is not intended to be a comprehensive reference source.
The literal instructions that involve data movement may use some of the following operands: * A literal value to be loaded into a W register or file register (specified by the value of `k') * The W register or file register where the literal value is to be loaded (specified by `Wb' or `f') However, literal instructions that involve arithmetic or logical operations use some of the following operands: * The first source operand, which is a register `Wb' without any address modifier * The second source operand, which is a literal value * The destination of the result (only if not the same as the first source operand), which is typically a register `Wd' with or without an address modifier The control instructions may use some of the following operands: * A program memory address * The mode of the table read and table write instructions All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are `0's. If this second word is executed as an instruction (by itself), it will execute as a NOP. Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.
The PIC24F instruction set adds many enhancements to the previous PIC(R) MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations. Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories: * * * * Word or byte-oriented operations Bit-oriented operations Literal operations Control operations
Table 28-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 28-2 lists all of the instructions, along with the status flags affected by each instruction. Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands: * The first source operand, which is typically a register `Wb' without any address modifier * The second source operand, which is typically a register `Ws' with or without an address modifier * The destination of the result, which is typically a register `Wd' with or without an address modifier However, word or byte-oriented file register instructions have two operands: * The file register specified by the value, `f' * The destination, which could either be the file register, `f', or the W0 register, which is denoted as `WREG' Most bit-oriented instructions (including rotate/shift instructions) have two operands: simple
* The W register (with or without an address modifier) or file register (specified by the value of `Ws' or `f') * The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, `Wb')
2010 Microchip Technology Inc.
DS39940D-page 297
PIC24FJ64GB004 FAMILY
TABLE 28-1:
Field #text (text) [text] {} .b .d .S .w bit4 C, DC, N, OV, Z Expr f lit1 lit4 lit5 lit8 lit10 lit14 lit16 lit23 None PC Slit10 Slit16 Slit6 Wb Wd Wdo Wm,Wn Wn Wnd Wns WREG Ws Wso Means literal defined by "text" Means "content of text" Means "the location addressed by text" Optional field or operation Register bit field Byte mode selection Double-Word mode selection Shadow register select Word mode selection (default) 4-bit bit selection field (used in word addressed instructions) {0...15} MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero Absolute address, label or expression (resolved by the linker) File register address {0000h...1FFFh} 1-bit unsigned literal {0,1} 4-bit unsigned literal {0...15} 5-bit unsigned literal {0...31} 8-bit unsigned literal {0...255} 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode 14-bit unsigned literal {0...16383} 16-bit unsigned literal {0...65535} 23-bit unsigned literal {0...8388607}; LSB must be `0' Field does not require an entry, may be blank Program Counter 10-bit signed literal {-512...511} 16-bit signed literal {-32768...32767} 6-bit signed literal {-16...16} Base W register {W0..W15} Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] } Destination W register { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] } Dividend, Divisor working register pair (direct addressing) One of 16 working registers {W0..W15} One of 16 destination working registers {W0..W15} One of 16 source working registers {W0..W15} W0 (working register used in file register instructions) Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] } Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }
SYMBOLS USED IN OPCODE DESCRIPTIONS
Description
DS39940D-page 298
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 28-2:
Assembly Mnemonic ADD ADD ADD ADD ADD ADD ADDC ADDC ADDC ADDC ADDC ADDC AND AND AND AND AND AND ASR ASR ASR ASR ASR ASR BCLR BCLR BCLR BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BSET BSET BSET BSW BSW.C BSW.Z BTG BTG BTG BTSC BTSC BTSC f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd f,#bit4 Ws,#bit4 C,Expr GE,Expr GEU,Expr GT,Expr GTU,Expr LE,Expr LEU,Expr LT,Expr LTU,Expr N,Expr NC,Expr NN,Expr NOV,Expr NZ,Expr OV,Expr Expr Z,Expr Wn f,#bit4 Ws,#bit4 Ws,Wb Ws,Wb f,#bit4 Ws,#bit4 f,#bit4 Ws,#bit4
INSTRUCTION SET OVERVIEW
Assembly Syntax f = f + WREG WREG = f + WREG Wd = lit10 + Wd Wd = Wb + Ws Wd = Wb + lit5 f = f + WREG + (C) WREG = f + WREG + (C) Wd = lit10 + Wd + (C) Wd = Wb + Ws + (C) Wd = Wb + lit5 + (C) f = f .AND. WREG WREG = f .AND. WREG Wd = lit10 .AND. Wd Wd = Wb .AND. Ws Wd = Wb .AND. lit5 f = Arithmetic Right Shift f WREG = Arithmetic Right Shift f Wd = Arithmetic Right Shift Ws Wnd = Arithmetic Right Shift Wb by Wns Wnd = Arithmetic Right Shift Wb by lit5 Bit Clear f Bit Clear Ws Branch if Carry Branch if Greater than or Equal Branch if Unsigned Greater than or Equal Branch if Greater than Branch if Unsigned Greater than Branch if Less than or Equal Branch if Unsigned Less than or Equal Branch if Less than Branch if Unsigned Less than Branch if Negative Branch if Not Carry Branch if Not Negative Branch if Not Overflow Branch if Not Zero Branch if Overflow Branch Unconditionally Branch if Zero Computed Branch Bit Set f Bit Set Ws Write C bit to Ws Write Z bit to Ws Bit Toggle f Bit Toggle Ws Bit Test f, Skip if Clear Bit Test Ws, Skip if Clear Description # of Words 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # of Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2 1 (2) 2 1 1 1 1 1 1 Status Flags Affected C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z N, Z N, Z N, Z N, Z N, Z C, N, OV, Z C, N, OV, Z C, N, OV, Z N, Z N, Z None None None None None None None None None None None None None None None None None None None None None None None None None None
1 None (2 or 3) 1 None (2 or 3)
2010 Microchip Technology Inc.
DS39940D-page 299
PIC24FJ64GB004 FAMILY
TABLE 28-2:
Assembly Mnemonic BTSS BTSS BTSS BTST BTST BTST.C BTST.Z BTST.C BTST.Z BTSTS BTSTS BTSTS.C BTSTS.Z CALL CALL CALL CLR CLR CLR CLR CLRWDT COM CLRWDT COM COM COM CP CP CP CP CP0 CP0 CP0 CPB CPB CPB CPB CPSEQ CPSGT CPSLT CPSNE DAW DEC CPSEQ CPSGT CPSLT CPSNE DAW.B DEC DEC DEC DEC2 DEC2 DEC2 DEC2 DISI DIV DISI DIV.SW DIV.SD DIV.UW DIV.UD EXCH FF1L FF1R EXCH FF1L FF1R f f,WREG Ws,Wd f Wb,#lit5 Wb,Ws f Ws f Wb,#lit5 Wb,Ws Wb,Wn Wb,Wn Wb,Wn Wb,Wn Wn f f,WREG Ws,Wd f f,WREG Ws,Wd #lit14 Wm,Wn Wm,Wn Wm,Wn Wm,Wn Wns,Wnd Ws,Wnd Ws,Wnd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax f,#bit4 Ws,#bit4 f,#bit4 Ws,#bit4 Ws,#bit4 Ws,Wb Ws,Wb f,#bit4 Ws,#bit4 Ws,#bit4 lit23 Wn f WREG Ws Description Bit Test f, Skip if Set Bit Test Ws, Skip if Set Bit Test f Bit Test Ws to C Bit Test Ws to Z Bit Test Ws to C Bit Test Ws to Z Bit Test then Set f Bit Test Ws to C, then Set Bit Test Ws to Z, then Set Call Subroutine Call Indirect Subroutine f = 0x0000 WREG = 0x0000 Ws = 0x0000 Clear Watchdog Timer f=f WREG = f Wd = Ws Compare f with WREG Compare Wb with lit5 Compare Wb with Ws (Wb - Ws) Compare f with 0x0000 Compare Ws with 0x0000 Compare f with WREG, with Borrow Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb - Ws - C) Compare Wb with Wn, Skip if = Compare Wb with Wn, Skip if > Compare Wb with Wn, Skip if < Compare Wb with Wn, Skip if Wn = Decimal Adjust Wn f=f-1 WREG = f - 1 Wd = Ws - 1 f=f-2 WREG = f - 2 Wd = Ws - 2 Disable Interrupts for k Instruction Cycles Signed 16/16-bit Integer Divide Signed 32/16-bit Integer Divide Unsigned 16/16-bit Integer Divide Unsigned 32/16-bit Integer Divide Swap Wns with Wnd Find First One from Left (MSb) Side Find First One from Right (LSb) Side # of Words 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # of Cycles Status Flags Affected
1 None (2 or 3) 1 None (2 or 3) 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Z C Z C Z Z C Z None None None None None WDTO, Sleep N, Z N, Z N, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z
1 None (2 or 3) 1 None (2 or 3) 1 None (2 or 3) 1 None (2 or 3) 1 1 1 1 1 1 1 1 18 18 18 18 1 1 1 C C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z None N, Z, C, OV N, Z, C, OV N, Z, C, OV N, Z, C, OV None C C
DS39940D-page 300
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 28-2:
Assembly Mnemonic GOTO GOTO GOTO INC INC INC INC INC2 INC2 INC2 INC2 IOR IOR IOR IOR IOR IOR LNK LSR LNK LSR LSR LSR LSR LSR MOV MOV MOV MOV MOV MOV MOV.b MOV MOV MOV MOV MOV.D MOV.D MUL MUL.SS MUL.SU MUL.US MUL.UU MUL.SU MUL.UU MUL NEG NEG NEG NEG NOP NOP NOPR POP POP POP POP.D POP.S PUSH PUSH PUSH PUSH.D PUSH.S f Wso Wns f Wdo Wnd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax Expr Wn f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd #lit14 f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd f,Wn [Wns+Slit10],Wnd f f,WREG #lit16,Wn #lit8,Wn Wn,f Wns,[Wns+Slit10] Wso,Wdo WREG,f Wns,Wd Ws,Wnd Wb,Ws,Wnd Wb,Ws,Wnd Wb,Ws,Wnd Wb,Ws,Wnd Wb,#lit5,Wnd Wb,#lit5,Wnd f f f,WREG Ws,Wd Go to Address Go to Indirect f=f+1 WREG = f + 1 Wd = Ws + 1 f=f+2 WREG = f + 2 Wd = Ws + 2 f = f .IOR. WREG WREG = f .IOR. WREG Wd = lit10 .IOR. Wd Wd = Wb .IOR. Ws Wd = Wb .IOR. lit5 Link Frame Pointer f = Logical Right Shift f WREG = Logical Right Shift f Wd = Logical Right Shift Ws Wnd = Logical Right Shift Wb by Wns Wnd = Logical Right Shift Wb by lit5 Move f to Wn Move [Wns + Slit10] to Wnd Move f to f Move f to WREG Move 16-bit Literal to Wn Move 8-bit Literal to Wn Move Wn to f Move Wns to [Wns + Slit10] Move Ws to Wd Move WREG to f Move Double from W(ns):W(ns + 1) to Wd Move Double from Ws to W(nd + 1):W(nd) {Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws) {Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws) {Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws) {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5) {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5) W3:W2 = f * WREG f=f+1 WREG = f + 1 Wd = Ws + 1 No Operation No Operation Pop f from Top-of-Stack (TOS) Pop from Top-of-Stack (TOS) to Wdo Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) Pop Shadow Registers Push f to Top-of-Stack (TOS) Push Wso to Top-of-Stack (TOS) Push W(ns):W(ns + 1) to Top-of-Stack (TOS) Push Shadow Registers Description # of Words 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # of Cycles 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 None N, Z None None None None None None None None None C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z None None None None None All None None None None Status Flags Affected None None C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z N, Z N, Z N, Z N, Z N, Z None C, N, OV, Z C, N, OV, Z C, N, OV, Z N, Z N, Z None None N, Z N, Z None None None
2010 Microchip Technology Inc.
DS39940D-page 301
PIC24FJ64GB004 FAMILY
TABLE 28-2:
Assembly Mnemonic PWRSAV RCALL PWRSAV RCALL RCALL REPEAT REPEAT REPEAT RESET RETFIE RETLW RETURN RLC RESET RETFIE RETLW RETURN RLC RLC RLC RLNC RLNC RLNC RLNC RRC RRC RRC RRC RRNC RRNC RRNC RRNC SE SETM SE SETM SETM SETM SL SL SL SL SL SL SUB SUB SUB SUB SUB SUB SUBB SUBB SUBB SUBB SUBB SUBB SUBR SUBR SUBR SUBR SUBR SUBBR SUBBR SUBBR SUBBR SUBBR SWAP SWAP.b SWAP f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG Ws,Wd f f,WREG Ws,Wd Ws,Wnd f WREG Ws f f,WREG Ws,Wd Wb,Wns,Wnd Wb,#lit5,Wnd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Wb,Ws,Wd Wb,#lit5,Wd f f,WREG Wb,Ws,Wd Wb,#lit5,Wd Wn Wn #lit10,Wn
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax #lit1 Expr Wn #lit14 Wn Description Go into Sleep or Idle mode Relative Call Computed Call Repeat Next Instruction lit14 + 1 times Repeat Next Instruction (Wn) + 1 times Software Device Reset Return from Interrupt Return with Literal in Wn Return from Subroutine f = Rotate Left through Carry f WREG = Rotate Left through Carry f Wd = Rotate Left through Carry Ws f = Rotate Left (No Carry) f WREG = Rotate Left (No Carry) f Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f WREG = Rotate Right through Carry f Wd = Rotate Right through Carry Ws f = Rotate Right (No Carry) f WREG = Rotate Right (No Carry) f Wd = Rotate Right (No Carry) Ws Wnd = Sign-Extended Ws f = FFFFh WREG = FFFFh Ws = FFFFh f = Left Shift f WREG = Left Shift f Wd = Left Shift Ws Wnd = Left Shift Wb by Wns Wnd = Left Shift Wb by lit5 f = f - WREG WREG = f - WREG Wn = Wn - lit10 Wd = Wb - Ws Wd = Wb - lit5 f = f - WREG - (C) WREG = f - WREG - (C) Wn = Wn - lit10 - (C) Wd = Wb - Ws - (C) Wd = Wb - lit5 - (C) f = WREG - f WREG = WREG - f Wd = Ws - Wb Wd = lit5 - Wb f = WREG - f - (C) WREG = WREG - f - (C) Wd = Ws - Wb - (C) Wd = lit5 - Wb - (C) Wn = Nibble Swap Wn Wn = Byte Swap Wn # of Words 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # of Cycles 1 2 2 1 1 1 3 (2) 3 (2) 3 (2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Status Flags Affected WDTO, Sleep None None None None None None None None C, N, Z C, N, Z C, N, Z N, Z N, Z N, Z C, N, Z C, N, Z C, N, Z N, Z N, Z N, Z C, N, Z None None None C, N, OV, Z C, N, OV, Z C, N, OV, Z N, Z N, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z C, DC, N, OV, Z None None
DS39940D-page 302
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 28-2:
Assembly Mnemonic TBLRDH TBLRDL TBLWTH TBLWTL ULNK XOR TBLRDH TBLRDL TBLWTH TBLWTL ULNK XOR XOR XOR XOR XOR ZE ZE f f,WREG #lit10,Wn Wb,Ws,Wd Wb,#lit5,Wd Ws,Wnd
INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly Syntax Ws,Wd Ws,Wd Ws,Wd Ws,Wd Description Read Prog<23:16> to Wd<7:0> Read Prog<15:0> to Wd Write Ws<7:0> to Prog<23:16> Write Ws to Prog<15:0> Unlink Frame Pointer f = f .XOR. WREG WREG = f .XOR. WREG Wd = lit10 .XOR. Wd Wd = Wb .XOR. Ws Wd = Wb .XOR. lit5 Wnd = Zero-Extend Ws # of Words 1 1 1 1 1 1 1 1 1 1 1 # of Cycles 2 2 2 2 1 1 1 1 1 1 1 Status Flags Affected None None None None None N, Z N, Z N, Z N, Z N, Z C, Z, N
2010 Microchip Technology Inc.
DS39940D-page 303
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 304
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
29.0 ELECTRICAL CHARACTERISTICS
This section provides an overview of the PIC24FJ64GB004 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC24FJ64GB004 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.
Absolute Maximum Ratings()
Ambient temperature under bias.............................................................................................................-40C to +135C Storage temperature .............................................................................................................................. -65C to +150C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any combined analog and digital pin, and MCLR, with respect to VSS ........................ -0.3V to (VDD + 0.3V) Voltage on any digital only pin with respect to VSS .................................................................................. -0.3V to +6.0V Voltage on VDDCORE with respect to VSS ................................................................................................. -0.3V to +3.0V Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin (Note 1)................................................................................................................250 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports (Note 1)....................................................................................................200 mA Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 29-1). NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2010 Microchip Technology Inc.
DS39940D-page 305
PIC24FJ64GB004 FAMILY
29.1 DC Characteristics
PIC24FJ64GB004 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)
3.00V 2.75V Voltage (VDDCORE)(1) 2.50V 2.35V 2.00V PIC24FJ64GB004 Family 2.35V 2.75V
FIGURE 29-1:
16 MHz
Frequency
32 MHz
For frequencies between 16 MHz and 32 MHz, FMAX = (45.7 MHz/V) * (VDDCORE - 2V) + 16 MHz. Note 1: When the voltage regulator is disabled, VDD and VDDCORE must be maintained so that VDDCOREVDD3.6V.
FIGURE 29-2:
PIC24FJ64GB004 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED TEMPERATURE)
3.00V 2.75V (VDDCORE)(1) 2.50V 2.25V 2.00V PIC24FJ64GB004 Family 2.75V
2.35V
Voltage
16 MHz Frequency
24 MHz
For frequencies between 16 MHz and 24 MHz, FMAX = (22.9 MHz/V) * (VDDCORE - 2V) + 16 MHz. Note 1: WHEN the voltage regulator is disabled, VDD and VDDCORE must be maintained so that VDDCOREVDD3.6V.
DS39940D-page 306
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-1: THERMAL OPERATING CONDITIONS
Rating PIC24FJ64GB004 Family: Operating Junction Temperature Range Operating Ambient Temperature Range Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - IOH) I/O Pin Power Dissipation: PI/O = ({VDD - VOH} x IOH) + (VOL x IOL) Maximum Allowed Power Dissipation PDMAX (TJ - TA)/JA W TJ TA -40 -40 -- -- +140 +125 C C Symbol Min Typ Max Unit
PD
PINT + PI/O
W
TABLE 29-2:
THERMAL PACKAGING CHARACTERISTICS
Characteristic Symbol JA JA JA JA Typ 49 33.7 28 39.3 Max -- -- -- -- Unit C/W C/W C/W C/W Notes (Note 1) (Note 1) (Note 1) (Note 1)
Package Thermal Resistance, 300 mil SOIC Package Thermal Resistance, 6x6x0.9 mm QFN Package Thermal Resistance, 8x8x1 mm QFN Package Thermal Resistance, 10x10x1 mm TQFP Note 1:
Junction to ambient thermal resistance; Theta-JA (JA) numbers are achieved by package simulations.
2010 Microchip Technology Inc.
DS39940D-page 307
PIC24FJ64GB004 FAMILY
TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min Typ(1) Max Units Conditions DC CHARACTERISTICS Param Symbol No. Operating Voltage DC10 Supply Voltage VDD VDD VDDCORE DC12 DC16 VDR VPOR RAM Data Retention Voltage(2) VDD Start Voltage to Ensure Internal Power-on Reset Signal VDD Rise Rate to Ensure Internal Power-on Reset Signal Brown-out Reset Voltage 2.2 VDDCORE 2.0 1.5 VSS -- -- -- -- -- 3.6 3.6 2.75 -- -- V V V V V Regulator enabled Regulator disabled Regulator disabled Characteristic
DC17
SVDD
0.05
--
--
V/ms
0-3.3V in 0.1s 0-2.5V in 60 ms
DC18
VBOR
--
2.05
--
V
Note 1: 2:
Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. This is the limit to which VDD can be lowered without losing RAM data.
DS39940D-page 308
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS Parameter No. DC21 DC21a DC21b DC21f DC21c DC21d DC21e DC21g DC20 DC20a DC20b DC20c DC20d DC20e DC20f DC20g DC23 DC23a DC23b DC23c DC23d DC23e DC23f DC23g Note 1: 2:
Typical(1)
Operating Current (IDD)(2) 0.24 0.25 0.25 0.3 0.44 0.41 0.41 0.6 0.5 0.5 0.5 0.6 0.75 0.75 0.75 1.0 2.0 2.0 2.0 2.4 2.9 2.9 2.9 3.5 0.395 0.395 0.395 0.395 0.78 0.78 0.78 0.78 0.75 0.75 0.75 0.75 1.4 1.4 1.4 1.4 3.0 3.0 3.0 3.0 4.2 4.2 4.2 4.2 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C 3.3V(4) 2.0V(3) 4 MIPS 3.3V(4) 2.0V(3) 1 MIPS 3.3V(4) 2.0V(3) 0.5 MIPS
3: 4:
Data in "Typical" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.
2010 Microchip Technology Inc.
DS39940D-page 309
PIC24FJ64GB004 FAMILY
TABLE 29-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions DC CHARACTERISTICS Parameter No. DC24 DC24a DC24b DC24c DC24d DC24e DC24f DC24g DC31 DC31a DC31b DC31c DC31d DC31e DC31f DC31g Note 1: 2:
Typical(1)
Operating Current (IDD)(2) 10.5 10.5 10.5 11.3 11.3 11.3 11.3 11.3 15.0 15.0 20.0 42.0 57.0 57.0 95.0 114.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 18.0 19.0 36.0 55.0 120.0 125.0 160.0 180.0 mA mA mA mA mA mA mA mA A A A A A A A A -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C 3.3V(4) 2.0V(3) LPRC (31 kHz) 3.3V(4) 2.5V(3) 16 MIPS
3: 4:
Data in "Typical" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.
DS39940D-page 310
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended
Max Units Conditions
DC CHARACTERISTICS
Parameter No. DC41 DC41a DC41b DC41f DC41c DC41d DC41e DC41g DC40 DC40a DC40b DC40c DC40d DC40e DC40f DC40g DC43 DC43a DC43b DC43c DC43d DC43e DC43f DC43g DC47 DC47a DC47b DC47f DC47c DC47d DC47e DC47g Note 1: 2: Typical(1)
Idle Current (IIDLE)(2) 67 68 74 102 166 167 177 225 125 125 125 167 210 210 210 305 0.5 0.5 0.5 0.54 0.75 0.75 0.75 0.80 2.6 2.6 2.6 2.7 2.9 2.9 2.9 3.0 100 100 100 120 265 265 265 285 180 180 180 200 350 350 350 370 0.6 0.6 0.6 0.62 0.95 0.95 0.95 0.97 3.3 3.3 3.3 3.3 3.5 3.5 3.5 3.6 A A A A A A A A A A A A A A A A mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C 3.3V(4) 2.5V(3) 16 MIPS 3.3V(4) 2.0V(3) 4 MIPS 3.3V(4) 2.0V(3) 1 MIPS 3.3V(4) 2.0V(3) 0.5 MIPS
3: 4:
Data in "Typical" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.
2010 Microchip Technology Inc.
DS39940D-page 311
PIC24FJ64GB004 FAMILY
TABLE 29-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended
Max Units Conditions
DC CHARACTERISTICS
Parameter No. DC50 DC50a DC50b DC50c DC50d DC50e DC50f DC50g DC51 DC51a DC51b DC51c DC51d DC51e DC51f DC51g Note 1: 2: Typical(1)
Idle Current (IIDLE)(2) 0.8 0.8 0.8 0.9 1.1 1.1 1.1 1.2 2.4 2.2 7.2 35 38 44 70 96 1.0 1.0 1.0 1.1 1.3 1.3 1.3 1.4 8.0 8.0 21 50 55 60 100 150 mA mA mA mA mA mA mA mA A A A A A A A A -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C -40C +25C +85C +125C 3.3V(4) 2.0V(3) LPRC (31 kHz) 3.3V(4) 2.0V(3) FRC (4 MIPS)
3: 4:
Data in "Typical" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.
DS39940D-page 312
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN BASE CURRENT (IPD)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions DC CHARACTERISTICS Parameter No. DC60 DC60a DC60i DC60b DC60m DC60c DC60d DC60j DC60e DC60n DC60f DC60g DC60k DC60h DC60p DC70c DC70d DC70j DC70e DC70a DC70f DC70g DC70k DC70h DC70b Note 1: 2: Typical(1)
Power-Down Current (IPD)(2) 0.05 0.2 2.0 3.5 29.9 0.1 0.4 2.5 4.2 36.2 3.3 3.3 5.0 7.0 39.2 0.003 0.02 0.2 0.51 6.1 0.01 0.04 0.2 0.71 7.2 1.0 1.0 6.5 12 50 1.0 1.0 15 25 75 9.0 10 20 30 80 0.2 0.2 0.35 1.5 12 0.3 0.3 0.5 2.0 16 A A A A A A A A A A A A A A A A A A A A A A A A A -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C 3.3V(4) Base Deep Sleep Current 2.5V(4) 3.3V(4) 2.5V(3) Base Power-Down Current(5) 2.0V(3)
3: 4: 5:
Data in the Typical column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Base IPD is measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral Module Disable (PMD) bits for all unused peripherals are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
2010 Microchip Technology Inc.
DS39940D-page 313
PIC24FJ64GB004 FAMILY
TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL MODULE CURRENT (IPD)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS Parameter No. DC61 DC61a DC61i DC61b DC61m DC61c DC61d DC61j DC61e DC61p DC61f DC61g DC61k DC61h DC61n DC62 DC62a DC62i DC62b DC62m DC62c DC62d DC62j DC62e DC62n DC62f DC62g DC62k DC62h DC62p Note 1: 2: Typical(1)
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is `0'(2) 0.2 0.2 0.2 0.23 0.3 0.25 0.25 0.25 0.28 0.5 0.6 0.6 0.6 0.8 1.0 0.5 0.5 0.5 0.5 0.6 0.7 0.7 0.7 0.7 0.8 1.5 1.5 1.5 1.5 1.9 0.7 0.7 0.7 0.7 1.0 0.9 0.9 0.9 0.9 1.2 1.5 1.5 1.5 1.5 1.7 1.0 1.0 1.0 1.3 1.6 1.5 1.5 1.5 1.8 2.1 2.0 2.0 2.0 2.5 3.0 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C 3.3V(4) 2.5V
(3)
2.0V(3)
2.5V(3)
31 kHz LPRC Oscillator with RTCC, WDT, DSWDT or Timer 1: ILPRC(5)
3.3V(4)
2.0V(3)
Low drive strength, 32 kHz Crystal with RTCC, DSWDT or Timer1: ISOSC; SOSCSEL = 01(5)
3: 4: 5:
Data in the Typical column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled. PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
DS39940D-page 314
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL MODULE CURRENT (IPD) (CONTINUED)
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Max Units Conditions
DC CHARACTERISTICS Parameter No. DC63 DC63a DC63i DC63b DC63m DC63c DC63d DC63j DC63e DC63n DC63f DC63g DC63k DC63h DC63p DC71c DC71d DC71j DC71e DC71a DC71f DC71g DC71k DC71h DC71b Note 1: 2: Typical(1)
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is `0'(2) 1.8 1.8 1.8 1.8 2.2 2 2 2 2 2.5 2.25 2.25 2.25 2.25 2.8 0.001 0.03 0.05 0.08 3.9 0.001 0.03 0.05 0.08 3.9 2.3 2.7 3.0 3.0 3.3 2.7 2.9 3.2 3.5 3.8 3.0 3.0 3.3 3.5 4.0 0.25 0.25 0.60 2.0 10 0.50 0.50 0.75 2.5 12.5 A A A A A A A A A A A A A A A A A A A A A A A A A -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C -40C +25C +60C +85C +125C 3.3V(4) Deep Sleep BOR: IDSBOR(5) 2.5V(4) 3.3V(4) 2.5V(3) 32 kHz Crystal with RTCC, DSWDT or Timer1: ISOSC; SOSCSEL = 11(5) 2.0V(3)
3: 4: 5:
Data in the Typical column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled. PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set. On-chip voltage regulator disabled (DISVREG tied to VDD). On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
2010 Microchip Technology Inc.
DS39940D-page 315
PIC24FJ64GB004 FAMILY
TABLE 29-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min Typ(1) Max Units Conditions
DC CHARACTERISTICS Param No. DI10 DI11 DI15 DI16 DI17 DI18 DI19 VIH DI20
Sym VIL
Characteristic Input Low Voltage(4) I/O Pins with ST Buffer I/O Pins with TTL Buffer MCLR OSC1 (XT mode) OSC1 (HS mode) I/O Pins with I2CTM Buffer: I/O Pins with SMBus Buffer: Input High Voltage(4) I/O Pins with ST Buffer: with Analog Functions, Digital Only I/O Pins with TTL Buffer: with Analog Functions, Digital Only MCLR OSC1 (XT mode) OSC1 (HS mode) I/O Pins with I2C Buffer: with Analog Functions, Digital Only I/O Pins with SMBus Buffer: with Analog Functions, Digital Only
VSS VSS VSS VSS VSS VSS VSS
-- -- -- -- -- -- --
0.2 VDD 0.15 VDD 0.2 VDD 0.2 VDD 0.2 VDD 0.3 VDD 0.8
V V V V V V V SMBus enabled
0.8 VDD 0.8 VDD 0.25 VDD + 0.8 0.25 VDD + 0.8 0.8 VDD 0.7 VDD 0.7 VDD 0.7 VDD 0.7 VDD 2.1 2.1 50 -- -- -- -- --
-- -- -- -- -- -- -- -- --
VDD 5.5 VDD 5.5 VDD VDD VDD VDD 5.5 VDD 5.5
V V V V V V V V V 2.5V VPIN VDD V V A nA nA nA nA nA VDD = 3.3V, VPIN = VSS VSS VPIN VDD, Pin at high-impedance VSS VPIN VDD, Pin at high-impedance VUSB VDD VSS VPIN VDD VSS VPIN VDD, XT and HS modes
DI21
DI25 DI26 DI27 DI28
DI29
DI30 DI50 DI51 DI52 DI55 DI56 Note 1: 2:
ICNPU CNx Pull-up Current IIL Input Leakage I/O Ports Analog Input Pins USB Differential Pins (D+, D-) MCLR OSC1 Current(2,3)
250 -- -- -- -- --
400 +50 +50 +50 +50 +50
3: 4:
Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. Refer to Table 1-2 for I/O pins buffer types.
DS39940D-page 316
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min Typ(1) Max Units Conditions
DC CHARACTERISTICS Param No. DO10
DO16
Sym VOL
Characteristic Output Low Voltage I/O Ports I/O Ports
-- --
-- --
-- --
-- --
0.4 0.4
0.4 0.4
V V
V V
IOL = 8.5 mA, VDD = 3.6V IOL = 5.0 mA, VDD = 2.0V
IOL = 8.0 mA, VDD = 3.6V, 125C IOL = 4.5 mA, VDD = 2.0V, 125C
VOH DO20
Output High Voltage I/O Ports 3.0 2.4 1.65 1.4 -- -- -- --
-- --
-- -- -- --
-- --
V V V V
V V
IOH = -3.0 mA, VDD = 3.6V IOH = -6.0 mA, VDD = 3.6V IOH = -1.0 mA, VDD = 2.0V IOH = -3.0 mA, VDD = 2.0V
IOH = -2.5 mA, VDD = 3.6V, 125C IOH = -0.5 mA, VDD = 2.0V, 125C
DO26
I/O Ports
3.0 1.65
Note 1:
Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
TABLE 29-10: DC CHARACTERISTICS: PROGRAM MEMORY
DC CHARACTERISTICS Param No. D130 D131 Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Cell Endurance VDD for Read Min 10,000 VMIN Typ(1) -- -- Max -- 3.6 Units E/W V Conditions -40C to +85C VMIN = Minimum operating voltage
Sym EP VPR
VPEW Supply Voltage for Self-Timed Writes D132A D132B D133A D133B D134 D135 Note 1: TIW TIE VDDCORE VDD Self-Timed Write Cycle Time Self-Timed Page Erase Time 2.25 2.35 -- 40 20 -- -- -- 3 -- -- 7 3.6 3.6 -- -- -- -- V V ms ms Year mA Provided no other specifications are violated
TRETD Characteristic Retention IDDP Supply Current during Programming
Data in "Typ" column is at 3.3V, 25C unless otherwise stated.
2010 Microchip Technology Inc.
DS39940D-page 317
PIC24FJ64GB004 FAMILY
TABLE 29-11: COMPARATOR SPECIFICATIONS
Operating Conditions: 2.0V < VDD < 3.6V, -40C < TA < +85C (unless otherwise stated) Param No. D300 D301 D302 300 301 * Note 1: Symbol VIOFF VICM CMRR TRESP TMC2OV Characteristic Input Offset Voltage* Input Common Mode Voltage* Common Mode Rejection Ratio* Response Time*(1) Comparator Mode Change to Output Valid* Min -- 0 55 -- -- Typ 20 -- -- 150 -- Max 40 VDD -- 400 10 Units mV V dB ns s Comments
Parameters are characterized but not tested. Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from VSS to VDD.
TABLE 29-12: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS
Operating Conditions: 2.0V < VDD < 3.6V, -40C < TA < +85C (unless otherwise stated) Param No. Symbol Characteristic Resolution Absolute Accuracy Unit Resistor Value (R) Settling Time(1) Min VDD/24 -- -- -- Typ -- -- 2k -- Max VDD/32 AVDD - 1.5 -- 10 Units LSb LSb s Comments
VRD310 CVRES VRD311 CVRAA VRD312 CVRUR VR310 Note 1: TSET
Settling time measured while CVRR = 1 and CVR<3:0> bits transition from `0000' to `1111'.
TABLE 29-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
Operating Conditions: -40C < TA < +85C (unless otherwise stated) Param Symbol No. VBG TBG VRGOUT CEFC Characteristics Band Gap Reference Voltage Band Gap Reference Start-up Time Regulator Output Voltage External Filter Capacitor Value Min 1.14 -- 2.35 4.7 Typ 1.2 1 2.5 10 Max 1.26 -- 2.75 -- Unit s V ms V F Series resistance < 3 Ohm recommended; < 5 Ohm required. Comments
DS39940D-page 318
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
29.2 AC Characteristics and Timing Parameters
The information contained in this section defines the PIC24FJ64GB004 family AC characteristics and timing parameters.
TABLE 29-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC
AC CHARACTERISTICS Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial and -40C TA +125C for Extended Operating voltage VDD range as described in Section 29.1 "DC Characteristics".
FIGURE 29-3:
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load Condition 2 - for OSCO
Load Condition 1 - for all pins except OSCO VDD/2 RL
Pin VSS
CL
Pin VSS
CL
RL = 464 CL = 50 pF for all pins except OSCO 15 pF for OSCO output
TABLE 29-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
Param Symbol No. DO50 COSC2 Characteristic OSCO/CLKO Pin Min -- Typ(1) -- Max 15 Units pF Conditions In XT and HS modes when external clock is used to drive OSCI. EC mode. In I2CTM mode.
DO56 DO58 Note 1:
CIO CB
All I/O Pins and OSCO SCLx, SDAx
-- --
-- --
50 400
pF pF
Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
2010 Microchip Technology Inc.
DS39940D-page 319
PIC24FJ64GB004 FAMILY
FIGURE 29-4:
Q4
EXTERNAL CLOCK TIMING
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
OSCI
OS20 OS25 OS30 OS30 OS31 OS31
CLKO
OS40 OS41
TABLE 29-16: EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS Param Sym No. OS10 Characteristic Standard Operating Conditions: 2.50 to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min DC 4 DC 4 3 3 10 31 3 10 -- 62.5 0.45 x TOSC -- -- -- Typ(1) -- -- -- -- -- -- -- -- -- -- -- -- -- -- 6 6 Max 32 8 24 6 10 8 32 33 6 24 -- DC -- 20 10 10 Units MHz MHz MHz MHz MHz MHz MHz kHz MHz MHz -- ns ns ns ns ns EC EC Conditions EC, -40C TA +85C ECPLL, -40C TA +85C EC, -40C TA +125C ECPLL, -40C TA +125C XT XTPLL, -40C TA +85C HS, -40C TA +85C SOSC XTPLL, -40C TA +125C HS, -40C TA +125C See parameter OS10 for FOSC value
FOSC External CLKI Frequency (External clocks allowed only in EC mode) Oscillator Frequency
OS20 OS25 OS30 OS31 OS40 OS41
TOSC TOSC = 1/FOSC TCY Instruction Cycle Time(2)
TosL, External Clock in (OSCI) TosH High or Low Time TosR, External Clock in (OSCI) TosF Rise or Fall Time TckR TckF CLKO Rise Time(3) CLKO Fall Time(3)
Note 1: 2:
3:
Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested. Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).
DS39940D-page 320
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)
AC CHARACTERISTICS Param No. OS50 OS51 OS52 OS53 Note 1: 2: Sym FPLLI FSYS Characteristic(1) PLL Input Frequency Range(2) PLL Output Frequency Range Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min 4 95.76 -- -0.25 Typ(2) -- -- 180 -- Max 32 96.24 -- 0.25 Units MHz MHz s % Conditions ECPLL, HSPLL, XTPLL modes
TLOCK PLL Start-up Time (Lock Time) DCLK CLKO Stability (Jitter)
These parameters are characterized but not tested in manufacturing. Data in "Typ" column is at 3.3V, 25C unless otherwise stated. Parameters are for design guidance only and are not tested.
TABLE 29-18: INTERNAL RC OSCILLATOR SPECIFICATIONS
AC CHARACTERISTICS Param No. Sym TFRC Characteristic(1) FRC Start-up Time Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -- -- Typ 15 500 Max -- -- Units s s Conditions
TLPRC LPRC Start-up Time
TABLE 29-19: INTERNAL RC OSCILLATOR ACCURACY
AC CHARACTERISTICS Param No. F20 F21 Note 1: 2: 3: Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -1.25 -15 Typ +0.25 -- Max 1.0 15 Units % % Conditions -40C TA +85C, 3.0V VDD 3.6V -40C TA +85C, 3.0V VDD 3.6V
Characteristic FRC Accuracy @ 8 MHz(1,3) LPRC Accuracy @ 31 kHz(2)
Frequency calibrated at 25C and 3.3V. OSCTUN bits can be used to compensate for temperature drift. Change of LPRC frequency as VDD changes. To achieve this accuracy, physical stress applied to the microcontroller package (ex: by flexing the PCB) must be kept to a minimum.
2010 Microchip Technology Inc.
DS39940D-page 321
PIC24FJ64GB004 FAMILY
FIGURE 29-5: CLKO AND I/O TIMING CHARACTERISTICS
I/O Pin (Input) DI35 DI40 I/O Pin (Output) Old Value DO31 DO32 Note: Refer to Figure 29-3 for load conditions. New Value
TABLE 29-20: CLKO AND I/O TIMING REQUIREMENTS
AC CHARACTERISTICS Param No. DO31 DO32 DI35 DI40 Note 1: Sym TIOR TIOF TINP TRBP Characteristic Port Output Rise Time Port Output Fall Time INTx pin High or Low Time (output) CNx High or Low Time (input) Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Min -- -- 20 2 Typ(1) 10 10 -- -- Max 25 25 -- -- Units ns ns ns TCY Conditions
Data in "Typ" column is at 3.3V, 25C unless otherwise stated.
TABLE 29-21: RESET, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS
AC CHARACTERISTICS Param Symbol No. SY10 SY11 SY12 SY13 SY25 TmcL TPWRT TPOR TIOZ TBOR TRST TDSWU Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic MCLR Pulse Width (low) Power-up Timer Period Power-on Reset Delay I/O High-Impedance from MCLR Low or Watchdog Timer Reset Brown-out Reset Pulse Width Internal State Reset Time Wake-up from Deep Sleep Time Min. 2 -- -- -- 1 -- -- Typ(1) -- 64 2 -- -- 50 200 Max. -- -- -- 100 -- -- -- Units s ms s ns s s s Based on full discharge of 10 F capacitor on VCAP. Includes TPOR and TRST. VDD VBOR Conditions
Note 1:
Data in "Typ" column is at 3.3V, 25C unless otherwise stated.
DS39940D-page 322
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-21: RESET, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS
AC CHARACTERISTICS Param Symbol No. TPM Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min. -- -- Note 1: Typ(1) 10 190 Max. -- -- Units s s Sleep wake-up with PMSLP = 0 and WUTSEL<1:0> = 11 Conditions
Data in "Typ" column is at 3.3V, 25C unless otherwise stated.
2010 Microchip Technology Inc.
DS39940D-page 323
PIC24FJ64GB004 FAMILY
TABLE 29-22: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS Param No. AD01 Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min. Typ Max. Units Conditions
Symbol
Device Supply AVDD Module VDD Supply Greater of VDD - 0.3 or 2.0 VSS - 0.3 AVSS + 1.7 AVSS AVSS - 0.3 -- -- -- Lesser of VDD + 0.3 or 3.6 VSS + 0.3 AVDD AVDD - 1.7 AVDD + 0.3 1.25 -- V
AD02 AD05 AD06 AD07 AD08 AD09
AVSS VREFH VREFL VREF IVREF ZVREF
Module VSS Supply Reference Voltage High Reference Voltage Low Absolute Reference Voltage Reference voltage input current Reference input impedance
-- -- -- -- -- 10k
V V V V mA (Note 3) (Note 4)
Reference Inputs
Analog Input AD10 AD11 AD12 AD13 VINH-VINL Full-Scale Input Span VIN VINL -- Absolute Input Voltage Absolute VINL Input Voltage Leakage Current VREFL AVSS - 0.3 AVSS - 0.3 -- -- -- -- 0.001 VREFH AVDD + 0.3 AVDD/2 0.610 V V V A VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V, Source Impedance = 2.5 k 10-bit (Note 2)
AD17
RIN
Recommended Impedance of Analog Voltage Source Resolution Integral Nonlinearity Differential Nonlinearity Gain Error Offset Error Monotonicity(1)
--
--
2.5K
ADC Accuracy AD20b NR AD21b INL AD22b DNL AD23b GERR AD24b EOFF AD25b -- Note 1: 2: 3: 4: -- -- -- -- -- -- 10 1 0.5 1 1 -- -- <2 <1.25 3 2 -- bits LSb LSb LSb LSb -- VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V Guaranteed
The ADC conversion result never decreases with an increase in the input voltage and has no missing codes. Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference. External reference voltage applied to VREF+/- pins. IVREF is current during conversion at 3.3v, 25C. Parameter is for design guidance only and is not tested. Impedance during sampling at 3.3, 25C. Parameter is for design guidance only and is not tested.
DS39940D-page 324
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
TABLE 29-23: ADC CONVERSION TIMING REQUIREMENTS(1)
AC CHARACTERISTICS Param No. AD50 AD51 Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40C TA +85C for Industrial -40C TA +125C for Extended Characteristic Min. Typ Max. Units Conditions
Symbol
Clock Parameters TAD tRC ADC Clock Period ADC Internal RC Oscillator Period Conversion Time Throughput Rate Sample Time Sample Start Delay from setting Sample bit (SAMP) 75 -- -- 250 -- -- ns ns TCY = 75 ns, AD1CON3 in default state
Conversion Rate AD55 AD56 AD57 AD61 Note 1: tCONV FCNV tSAMP tPSS -- -- -- Clock Parameters 2 -- 3 TAD 12 -- 1 -- 500 -- TAD ksps TAD AVDD > 2.7V
Because the sample capacitors will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
2010 Microchip Technology Inc.
DS39940D-page 325
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 326
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
30.0
30.1
PACKAGING INFORMATION
Package Marking Information
28-Lead QFN Example
XXXXXXXX XXXXXXXX YYWWNNN
24FJ32GB 002/ML e3 1010017
28-Lead SOIC (.300")
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX YYWWNNN
Example
PIC24FJ32GB002/SO e3 1010017
28-Lead SPDIP
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX YYWWNNN
Example
PIC24FJ32GB002 -I/SP e3 1010017
28-Lead SSOP XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN
Example PIC24FJ32GB 002-I/SS e3 1010017
Legend: XX...X Y YY WW NNN * Note:
Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
2010 Microchip Technology Inc.
DS39940D-page 327
PIC24FJ64GB004 FAMILY
44-Lead QFN
Example
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN
24FJ64GB 004-I/ML e3 1010017
44-Lead TQFP
Example
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN
24FJ64GB 004-I/PT e3 1010017
DS39940D-page 328
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
30.2 Package Details
The following sections give the technical details of the packages.
/HDG 3ODVWLF 4XDG )ODW 1R /HDG 3DFNDJH 0/ [ PP %RG\ >4)1@ ZLWK PP &RQWDFW /HQJWK
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D D2
EXPOSED PAD
e E E2 2 1 2 1 N NOTE 1 TOP VIEW BOTTOM VIEW L K b
N
A
A3
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 6WDQGRII &RQWDFW 7KLFNQHVV 2YHUDOO :LGWK ([SRVHG 3DG :LGWK 2YHUDOO /HQJWK ([SRVHG 3DG /HQJWK &RQWDFW :LGWK &RQWDFW /HQJWK 1 H $ $ $ ( ( ' ' E / %6& 5() %6& %6& 0,1 0,//,0(7(56 120 0$;
&RQWDFW WR ([SRVHG 3DG . 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 3DFNDJH LV VDZ VLQJXODWHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
2010 Microchip Technology Inc.
DS39940D-page 329
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 4XDG )ODW 1R /HDG 3DFNDJH 0/ [ PP %RG\ >4)1@ ZLWK PP &RQWDFW /HQJWK
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
DS39940D-page 330
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 6PDOO 2XWOLQH 62 :LGH
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1 NOTE 1 123 b h A A2
e
h
c L
A1
L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\ 0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
PP SHU VLGH
%
2010 Microchip Technology Inc.
DS39940D-page 331
PIC24FJ64GB004 FAMILY
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
DS39940D-page 332
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
/HDG 6NLQQ\ 3ODVWLF 'XDO ,Q /LQH 63
1RWH
PLO %RG\ >63',3@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
N NOTE 1 E1
1
23 D E
A
A2 L c
A1
b1 b e eB
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 7RS WR 6HDWLQJ 3ODQH 0ROGHG 3DFNDJH 7KLFNQHVV %DVH WR 6HDWLQJ 3ODQH 6KRXOGHU WR 6KRXOGHU :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7LS WR 6HDWLQJ 3ODQH /HDG 7KLFNQHVV 8SSHU /HDG :LGWK /RZHU /HDG :LGWK 2YHUDOO 5RZ 6SDFLQJ 1 H $ $ $ ( ( ' / F E E H% 0,1
,1&+(6 120 %6& 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
2010 Microchip Technology Inc.
DS39940D-page 333
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 4XDG )ODW 1R /HDG 3DFNDJH 0/ [ PP %RG\ >4)1@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D2
D
EXPOSED PAD
e E E2 b 2 1 N TOP VIEW NOTE 1 2 1 N L BOTTOM VIEW K
A A3 A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 6WDQGRII &RQWDFW 7KLFNQHVV 2YHUDOO :LGWK ([SRVHG 3DG :LGWK 2YHUDOO /HQJWK ([SRVHG 3DG /HQJWK &RQWDFW :LGWK &RQWDFW /HQJWK 1 H $ $ $ ( ( ' ' E / %6& 5() %6& %6& 0,1 0,//,0(7(56 120 0$;
&RQWDFW WR ([SRVHG 3DG . 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 3DFNDJH LV VDZ VLQJXODWHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS39940D-page 334
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 4XDG )ODW 1R /HDG 3DFNDJH 0/ [ PP %RG\ >4)1@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
2010 Microchip Technology Inc.
DS39940D-page 335
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 7KLQ 4XDG )ODWSDFN 37
1RWH
[
[ PP %RG\
PP >74)3@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D D1
E e E1
N b NOTE 1 123 NOTE 2 A c
A1 L L1
A2
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI /HDGV /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII )RRW /HQJWK )RRWSULQW )RRW $QJOH 2YHUDOO :LGWK 2YHUDOO /HQJWK 0ROGHG 3DFNDJH :LGWK 0ROGHG 3DFNDJH /HQJWK /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ / / I ( ' ( ' F E D E 0,1
0,//,0(7(56 120 %6& 5() %6& %6& %6& %6& 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD &KDPIHUV DW FRUQHUV DUH RSWLRQDO VL]H PD\ YDU\ 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS39940D-page 336
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 7KLQ 4XDG )ODWSDFN 37
1RWH
[
[ PP %RG\
PP >74)3@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
2010 Microchip Technology Inc.
DS39940D-page 337
PIC24FJ64GB004 FAMILY
/HDG 3ODVWLF 6KULQN 6PDOO 2XWOLQH 66
1RWH
PP %RG\ >6623@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1
12 NOTE 1 b e
c A A2 L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW /HDG 7KLFNQHVV )RRW $QJOH /HDG :LGWK 1 H $ $ $ ( ( ' / / F I E 5() %6& 0,1 0,//,0(7(56 120 0$;
A1
L
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS39940D-page 338
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
2010 Microchip Technology Inc.
DS39940D-page 339
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 340
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
APPENDIX A: REVISION HISTORY
Revision C (October 2009)
Corrected Section 10.3 "Input Change Notification" regarding the number of ICN inputs and the availability of pull-downs. Updated Section 10.4.2 "Available Peripherals" by removing the Timer 1 clock input from Table 10-2. Updated Section 29.1 "DC Characteristics" as follows: * Added new specifications to Tables 29-4 and 29-5 for IDD and IIDLE at 0.5 MIPS operation. * Updated Table 29-4 with revised maximum IDD specifications for 1 MIPS and 4 MIPS. * Renumbered the parameters for the delta IPD current (32 kHz, SOSCEL = 11) from DC62n to DC63n.
Revision A (April 2009)
Original data sheet for the PIC24FJ64GB004 family of devices.
Revision B (July 2009)
Removed the unimplemented CNPD1 and CNPD2 registers from Table 4-4. Corrected the addresses of the CNPU1 and CNPU2 registers in the same table. Updated Table 6-2 (Reset Delay Times) with the addition of TRSRT to all table entries. Updated Register 7-35 (INTTREG) with a more descriptive version. Updated Section 9.2.4 "Deep Sleep Mode" with family-specific information and an extended discussion of special cases for Deep Sleep mode entry. Updated Section 29.1 "DC Characteristics" as follows: * Added Maximum values to Tables 29-4, 29-5, 29-6 and 29-7. * Updated specifications in Tables 29-3 and 29-8. * Added new Tables 29-11 (Comparator Specifications) and 29-12 (Comparator Voltage Reference Specifications), renumbering all subsequent tables. * Removed redundant or obsolete specifications in Tables 29-6, 29-7 and 29-12. Updated Section 29.2 "AC Characteristics and Timing Parameters" as follows: * Updated specifications in Tables 29-17 and 29-19. * Added new Table 29-21 (Reset, Power-up Timer and Brown-out Reset Timing Requirements), renumbering all subsequent tables. Other minor typographic revisions throughout the document.
Revision D (August 2010)
Updated Section 10.4.5 "Considerations Peripheral Pin Selection" as follows: * Replaced the code in Example 10-1. * Added the new code in Example 10-3. Updated Figure 18-1 in Section 18.0 "Universal Serial Bus with On-The-Go Support (USB OTG)" Updated follows: Section 29.1 "DC Characteristics"as for
* Added the "125c data" in Table 29-4,Table 29-5,Table 29-6 and Table 29-7. * Updated Min and Typ columns of DC16 in Table 29-3. * Updated OS10 parameter in Table 29-16. * Added rows, AD08 and AD09, in Table 29-22. * Added Figure 29-2.
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 342
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
INDEX
A
A/D Converter Analog Input Model ................................................... 267 Transfer Function...................................................... 268 AC Characteristics A/D Specifications..................................................... 324 ADC Conversion Requirements................................ 325 Capacitive Loading Requirements on Output Pins ....................................................... 319 CLKO and I/O Timing................................................ 322 External Clock Requirements ................................... 320 Internal RC Oscillator Accuracy ................................ 321 Internal RC Oscillator Specifications......................... 321 Load Conditions and Requirements for Timing Specifications ........................................ 319 PLL Clock Specifications .......................................... 321 Reset, Power-up Timer and Brown-out Reset Timing..................................................... 322 Temperature and Voltage Specifications .................. 319 Alternate Interrupt Vector Table (AIVT) .............................. 69 Assembler MPASM Assembler................................................... 294 Partially Multiplexed Addressing Application Example ......................................... 239 PIC24F CPU Core ...................................................... 26 PIC24FJ64GB004 Family (General)........................... 12 PMP Module Overview ............................................. 231 PSV Operation............................................................ 53 Reset System ............................................................. 63 RTCC........................................................................ 241 SPI Master, Frame Master Connection .................... 179 SPI Master, Frame Slave Connection ...................... 179 SPI Master/Slave Connection (Enhanced Buffer Modes)................................. 178 SPI Master/Slave Connection (Standard Mode)....... 178 SPI Slave, Frame Master Connection ...................... 179 SPI Slave, Frame Slave Connection ........................ 179 SPIx Module (Enhanced Mode)................................ 173 SPIx Module (Standard Mode) ................................. 172 System Clock............................................................ 107 Triple Comparator Module........................................ 269 Typical Shared I/O Port Structure............................. 127 UART (Simplified)..................................................... 189 USB OTG Bus Power Only................................................ 199 Dual Power, Example ....................................... 199 External Pull-up for Full-Speed Device Mode ............................................ 199 Host Interface, Example ................................... 200 OTG Interface, Example................................... 200 Self-Power Only................................................ 199 USB OTG Interrupt Funnel ....................................... 206 USB OTG Module..................................................... 198 USB PLL................................................................... 114 Watchdog Timer (WDT)............................................ 289
B
Block Diagrams 10-Bit High-Speed A/D Converter............................. 260 16-Bit Asynchronous Timer3 and Timer5 ................. 153 16-Bit Synchronous Timer2 and Timer4 ................... 153 16-Bit Timer1 Module................................................ 149 32-Bit Timer2/3 and Timer4/5 ................................... 152 8-Bit Multiplexed Address and Data Application Example ......................................... 240 Accessing Program Memory Using Table Instructions 52 Addressable PSP Example....................................... 238 Addressing for Table Registers................................... 55 BDT Mapping for Endpoint Buffering Modes ............ 202 CALL Stack Frame...................................................... 50 Comparator Voltage Reference ................................ 273 CPU Programmer's Model .......................................... 27 CRC Module ............................................................. 253 CRC Shift Engine...................................................... 253 CTMU Connections and Internal Configuration for Capacitance Measurement.......................... 275 CTMU Typical Connections and Internal Configuration for Pulse Delay Generation ........ 276 CTMU Typical Connections and Internal Configuration for Time Measurement ............... 276 Data Access From Program Space Address Generation .......................................................... 51 I2C Module ................................................................ 182 Individual Comparator Configurations....................... 270 Input Capture ............................................................ 157 LCD Control Example, Byte Mode ............................ 240 Legacy PSP Example ............................................... 238 Master Mode, Demultiplexed Addressing ................. 238 Master Mode, Fully Multiplexed Addressing ............. 239 Master Mode, Partially Multiplexed Addressing ........ 239 Multiplexed Addressing Application Example ........... 239 On-Chip Regulator Connections ............................... 287 Output Compare (16-Bit Mode)................................. 162 Parallel EEPROM Example, 16-Bit Data .................. 240 Parallel EEPROM Example, 8-Bit Data .................... 240
C
C Compilers MPLAB C18.............................................................. 294 Charge Time Measurement Unit. See CTMU. Code Examples Basic Clock Switching Sequence ............................. 113 Configuring UART1 Input and Output Functions, Assembly ........................................ 134 Erasing a Program Memory Block, `C'........................ 59 I/O Port Write/Read .................................................. 128 Initiating a Programming Sequence, `C' ..................... 60 Initiating a Programming Sequence, Assembly.......... 60 Loading the Write Buffers, `C'..................................... 60 Loading the Write Buffers, Assembly ......................... 59 PWRSAV Instruction Syntax .................................... 117 Setting the RTCWREN Bit ........................................ 242 Single-Word Flash Programming, `C' ......................... 61 Single-Word Flash Programming, Assembly.............. 61 Code Protection ................................................................ 289 Code Segment Protection ........................................ 290 Configuration Options....................................... 290 Configuration Register Protection............................. 290 Comparator Voltage Reference ........................................ 273 Configuring ............................................................... 273 Configuration Bits ............................................................. 279 Core Features....................................................................... 9
2010 Microchip Technology Inc.
DS39940D-page 343
PIC24FJ64GB004 FAMILY
CPU Arithmetic Logic Unit (ALU)......................................... 29 Clocking Scheme ...................................................... 108 Control Registers ........................................................ 28 Core Registers ............................................................ 27 Programmer's Model................................................... 25 CRC Registers ................................................................... 255 Typical Operation ...................................................... 255 User Interface ........................................................... 254 Data .................................................................. 254 Polynomial ........................................................ 254 CTMU Measuring Capacitance ............................................ 275 Measuring Time ........................................................ 276 Pulse Delay and Generation ..................................... 276 Customer Change Notification Service ............................. 348 Customer Notification Service........................................... 348 Customer Support ............................................................. 348
F
Flash Configuration Words ................................. 32, 279-285 Flash Program Memory ...................................................... 55 and Table Instructions ................................................ 55 Enhanced ICSP Operation ......................................... 56 JTAG Operation.......................................................... 56 Programming Algorithm .............................................. 58 RTSP Operation ......................................................... 56 Single-Word Programming ......................................... 61
I
I/O Ports Analog Input Voltage Considerations ....................... 128 Analog Port Pins Configuration................................. 128 Input Change Notification ......................................... 129 Open-Drain Configuration......................................... 128 Parallel (PIO) ............................................................ 127 Peripheral Pin Select ................................................ 129 Pull-ups and Pull-Downs........................................... 129 I2C Clock Rates .............................................................. 183 Communicating as Master in a Single Master Environment ......................................... 181 Reserved Addresses ................................................ 183 Setting Baud Rate When Operating as Bus Master ....................................................... 183 Slave Address Masking ............................................ 183 Input Capture 32-Bit Mode .............................................................. 158 Operations ................................................................ 158 Synchronous and Trigger Modes.............................. 157 Input Capture with Dedicated Timers ............................... 157 Instruction Set Overview................................................................... 299 Summary .................................................................. 297 Symbols Used in Opcode Descriptions .................... 298 Instruction-Based Power-Saving Modes........................... 117 Deep Sleep ............................................................... 118 Idle ............................................................................ 118 Sleep ........................................................................ 117 Inter-Integrated Circuit. See I2C. ...................................... 181 Internet Address ............................................................... 348 Interrupt Service Routine (ISR)......................................... 106 Interrupt Vector Table (IVT) ................................................ 69 Interrupts and Reset Sequence .................................................. 69 Control and Status Registers...................................... 72 Implemented Vectors.................................................. 71 Setup and Service Procedures ................................. 106 Trap Vectors ............................................................... 70 Vector Table ............................................................... 70
D
Data Memory Address Space............................................................ 33 Memory Map ............................................................... 33 Near Data Space ........................................................ 34 SFR Space.................................................................. 34 Software Stack ............................................................ 50 Space Organization and Alignment ............................ 34 DC Characteristics Comparator Specifications ........................................ 318 Comparator Voltage Reference ................................ 318 I/O Pin Input Specifications ....................................... 316 I/O Pin Output Specifications .................................... 317 Idle Current ............................................................... 311 Internal Voltage Regulator ........................................ 318 Operating Current ..................................................... 309 Power-Down Base Current ....................................... 313 Power-Down Peripheral Module Current (IPD) .......... 314 Program Memory ...................................................... 317 Temperature and Voltage Specifications .................. 308 Deep Sleep BOR (DSBOR) ................................................ 67 Deep Sleep Watchdog Timer (DSWDT) ........................... 289 Development Support ....................................................... 293 DISVREG Pin.................................................................... 287 Doze Mode........................................................................ 125
E
Electrical Characteristics Absolute Maximum Ratings ...................................... 305 Thermal Conditions ................................................... 307 V/F Graphs................................................................ 306 Equations A/D Conversion Clock Period ................................... 267 Baud Rate Reload Calculation .................................. 183 Calculating the PWM Period ..................................... 165 Calculation for Maximum PWM Resolution............... 165 Estimating USB Transceiver Current Consumption..................................................... 201 Relationship Between Device and SPI Clock Speed...................................................... 180 UART Baud Rate with BRGH = 0 ............................. 190 UART Baud Rate with BRGH = 1 ............................. 190 Errata .................................................................................... 8 Examples Baud Rate Error Calculation (BRGH = 0) ................. 190
J
JTAG Interface.................................................................. 291
M
Microchip Internet Web Site.............................................. 348 MPLAB ASM30 Assembler, Linker, Librarian ................... 294 MPLAB Integrated Development Environment Software.. 293 MPLAB PM3 Device Programmer .................................... 296 MPLAB REAL ICE In-Circuit Emulator System ................ 295 MPLINK Object Linker/MPLIB Object Librarian ................ 294
DS39940D-page 344
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
N
Near Data Space ................................................................ 34
O
On-Chip Voltage Regulator ............................................... 287 BOR .......................................................................... 288 POR .......................................................................... 287 Power-up Requirements ........................................... 288 Standby Mode........................................................... 288 Tracking .................................................................... 287 Oscillator Configuration..................................................... 107 Clock Selection ......................................................... 108 Clock Switching......................................................... 112 Sequence.......................................................... 113 Initial Configuration on POR ..................................... 108 Secondary Oscillator (SOSC) ................................... 115 USB Operation.......................................................... 114 Special Considerations ..................................... 114 Output Compare 32-Bit Mode............................................................... 161 Operations ................................................................ 163 Subcycle Resolution ................................................. 166 Synchronous and Trigger Modes.............................. 161 Output Compare with Dedicated Timers ........................... 161
P
Packaging ......................................................................... 327 Details ....................................................................... 329 Marking ..................................................................... 327 Parallel Master Port. See PMP. ........................................ 231 Peripheral Enable Bits ...................................................... 125 Peripheral Module Disable Bits ......................................... 125 Peripheral Pin Select (PPS) .............................................. 129 Available Peripherals and Pins ................................. 129 Configuration Control ................................................ 132 Considerations for Use ............................................. 133 Input Mapping ........................................................... 130 Output Mapping ........................................................ 131 Peripheral Priority ..................................................... 129 Pin Diagrams ................................................................ 4, 5, 6 Pinout Descriptions ............................................................. 13 Power-Saving Features .................................................... 117 Clock Frequency and Clock Switching...................... 117 Product Identification System ........................................... 350 Program Memory Access Using Table Instructions................................. 52 Address Space............................................................ 31 Addressing .................................................................. 50 Flash Configuration Words ......................................... 32 Memory Maps ............................................................. 31 Organization................................................................ 32 Program Space Visibility ............................................. 53 Program Space Visibility (PSV) .......................................... 53 Program Verification ......................................................... 289 Pulse-Width Modulation (PWM) Mode .............................. 164 Pulse-Width Modulation. See PWM. PWM Duty Cycle and Period .............................................. 165
R
Reader Response ............................................................. 349 Reference Clock Output.................................................... 115 Register Maps A/D Converter ............................................................. 43 Comparators ............................................................... 46
CPU Core ................................................................... 35 CRC............................................................................ 46 CTMU ......................................................................... 43 Deep Sleep................................................................. 48 I2C .............................................................................. 41 ICN ............................................................................. 36 Input Capture.............................................................. 39 Interrupt Controller...................................................... 37 NVM............................................................................ 48 Output Compare ......................................................... 40 Pad Configuration....................................................... 43 Parallel Master/Slave Port .......................................... 45 Peripheral Pin Select .................................................. 47 PMD............................................................................ 49 PORTA ....................................................................... 42 PORTB ....................................................................... 42 PORTC ....................................................................... 42 RTCC.......................................................................... 46 SPI.............................................................................. 42 System........................................................................ 48 Timers......................................................................... 38 UART.......................................................................... 41 USB OTG ................................................................... 44 Registers AD1CHS (A/D Input Select)...................................... 264 AD1CON1 (A/D Control 1)........................................ 261 AD1CON2 (A/D Control 2)........................................ 262 AD1CON3 (A/D Control 3)........................................ 263 AD1CSSL (A/D Input Scan Select)........................... 266 AD1PCFG (A/D Port Configuration) ......................... 265 ALCFGRPT (Alarm Configuration) ........................... 245 ALMINSEC (Alarm Minutes and Seconds Value) ................................................ 249 ALMTHDY (Alarm Month and Day Value) ................ 248 ALWDHR (Alarm Weekday and Hours Value) ......... 248 BDnSTAT Prototype (Buffer Descriptor n Status, CPU Mode)........................................... 205 BDnSTAT Prototype (Buffer Descriptor n Status, USB Mode)........................................... 204 CLKDIV (Clock Divider) ............................................ 111 CMSTAT (Comparator Module Status) .................... 272 CMxCON (Comparator x Control) ............................ 271 CORCON (CPU Control) ............................................ 29 CORCON (CPU Core Control) ................................... 73 CRCCON1 (CRC Control 1) ..................................... 256 CRCCON2 (CRC Control 2) ..................................... 257 CRCXORH (CRC XOR Polynomial, High Byte) ....... 258 CRCXORL (CRC XOR Polynomial, Low Byte)......... 257 CTMUCON (CTMU Control)..................................... 277 CTMUICON (CTMU Current Control) ....................... 278 CVRCON (Comparator Voltage Reference Control) ........................................... 274 CW1 (Flash Configuration Word 1) .......................... 280 CW2 (Flash Configuration Word 2) .......................... 282 CW3 (Flash Configuration Word 3) .......................... 284 DEVID (Device ID).................................................... 286 DEVREV (Device Revision)...................................... 286 DSCON (Deep Sleep Control).................................. 123 DSWAKE (Deep Sleep Wake-up Source) ................ 124 I2CxCON (I2Cx Control)........................................... 184 I2CxMSK (I2Cx Slave Mode Address Mask)............ 188 I2CxSTAT (I2Cx Status) ........................................... 186 ICxCON1 (Input Capture x Control 1)....................... 159 ICxCON2 (Input Capture x Control 2)....................... 160 IEC0 (Interrupt Enable Control 0) ............................... 82
2010 Microchip Technology Inc.
DS39940D-page 345
PIC24FJ64GB004 FAMILY
IEC1 (Interrupt Enable Control 1) ............................... 83 IEC2 (Interrupt Enable Control 2) ............................... 84 IEC3 (Interrupt Enable Control 3) ............................... 85 IEC4 (Interrupt Enable Control 4) ............................... 86 IEC5 (Interrupt Enable Control 5) ............................... 87 IFS0 (Interrupt Flag Status 0) ..................................... 76 IFS1 (Interrupt Flag Status 1) ..................................... 77 IFS2 (Interrupt Flag Status 2) ..................................... 78 IFS3 (Interrupt Flag Status 3) ..................................... 79 IFS4 (Interrupt Flag Status 4) ..................................... 80 IFS5 (Interrupt Flag Status 5) ..................................... 81 INTCON1 (Interrupt Control 1) .................................... 74 INTCON2 (Interrupt Control 2) .................................... 75 INTTREG (Interrupt Control and Status)................... 105 IPC0 (Interrupt Priority Control 0) ............................... 88 IPC1 (Interrupt Priority Control 1) ............................... 89 IPC10 (Interrupt Priority Control 10) ........................... 98 IPC11 (Interrupt Priority Control 11) ........................... 99 IPC12 (Interrupt Priority Control 12) ......................... 100 IPC15 (Interrupt Priority Control 15) ......................... 101 IPC16 (Interrupt Priority Control 16) ......................... 102 IPC18 (Interrupt Priority Control 18) ......................... 103 IPC19 (Interrupt Priority Control 19) ......................... 103 IPC2 (Interrupt Priority Control 2) ............................... 90 IPC21 (Interrupt Priority Control 21) ......................... 104 IPC3 (Interrupt Priority Control 3) ............................... 91 IPC4 (Interrupt Priority Control 4) ............................... 92 IPC5 (Interrupt Priority Control 5) ............................... 93 IPC6 (Interrupt Priority Control 6) ............................... 94 IPC7 (Interrupt Priority Control 7) ............................... 95 IPC8 (Interrupt Priority Control 8) ............................... 96 IPC9 (Interrupt Priority Control 9) ............................... 97 MINSEC (RTCC Minutes and Seconds Value) ......... 247 MTHDY (RTCC Month and Day Value) .................... 246 NVMCON (Flash Memory Control) ............................. 57 OCxCON1 (Output Compare x Control 1) ................ 167 OCxCON2 (Output Compare x Control 2) ................ 169 OSCCON (Oscillator Control) ................................... 109 OSCTUN (FRC Oscillator Tune) ............................... 112 PADCFG1 (Pad Configuration Control) ............ 237, 244 PMADDR (Parallel Port Address) ............................. 235 PMAEN (Parallel Port Enable) .................................. 235 PMCON (Parallel Port Control) ................................. 232 PMMODE (Parallel Port Mode) ................................. 234 PMSTAT (Parallel Port Status) ................................. 236 RCFGCAL (RTCC Calibration and Configuration) ................................................... 243 RCON (Reset Control) ................................................ 64 REFOCON (Reference Oscillator Control)................ 116 RPINR0 (Peripheral Pin Select Input 0) .................... 135 RPINR1 (Peripheral Pin Select Input 1) .................... 135 RPINR11 (Peripheral Pin Select Input 11) ................ 138 RPINR18 (Peripheral Pin Select Input 18) ................ 139 RPINR19 (Peripheral Pin Select Input 19) ................ 139 RPINR20 (Peripheral Pin Select Input 20) ................ 140 RPINR21 (Peripheral Pin Select Input 21) ................ 140 RPINR22 (Peripheral Pin Select Input 22) ................ 141 RPINR23 (Peripheral Pin Select Input 23) ................ 141 RPINR3 (Peripheral Pin Select Input 3) .................... 136 RPINR4 (Peripheral Pin Select Input 4) .................... 136 RPINR7 (Peripheral Pin Select Input 7) .................... 137 RPINR8 (Peripheral Pin Select Input 8) .................... 137 RPINR9 (Peripheral Pin Select Input 9) .................... 138 RPOR1 (Peripheral Pin Select Output 1) .................. 142 RPOR10 (Peripheral Pin Select Output 10) .............. 147 RPOR11 (Peripheral Pin Select Output 11).............. 147 RPOR12 (Peripheral Pin Select Output 12).............. 148 RPOR2 (Peripheral Pin Select Output 2).................. 143 RPOR3 (Peripheral Pin Select Output 3).................. 143 RPOR4 (Peripheral Pin Select Output 4).................. 144 RPOR5 (Peripheral Pin Select Output 5).................. 144 RPOR6 (Peripheral Pin Select Output 6).................. 145 RPOR7 (Peripheral Pin Select Output 7).................. 145 RPOR8 (Peripheral Pin Select Output 8).................. 146 RPOR9 (Peripheral Pin Select Output 9).................. 146 SPIxCON1 (SPIx Control 1)...................................... 176 SPIxCON2 (SPIx Control 2)...................................... 177 SPIxSTAT (SPIx Status and Control) ....................... 174 SR (ALU STATUS, in CPU)........................................ 73 SR (ALU STATUS) ..................................................... 28 T1CON (Timer1 Control) .......................................... 150 TxCON (Timer2 and Timer4 Control) ....................... 154 TyCON (Timer3 and Timer5 Control) ....................... 155 U1ADDR (USB Address) .......................................... 219 U1CNFG1 (USB Configuration 1)............................. 220 U1CNFG2 (USB Configuration 2)............................. 221 U1CON (USB Control, Device Mode)....................... 217 U1CON (USB Control, Host Mode) .......................... 218 U1EIE (USB Error Interrupt Enable) ......................... 228 U1EIR (USB Error Interrupt Status).......................... 227 U1EPn (USB Endpoint n Control)............................. 229 U1IE (USB Interrupt Enable) .................................... 226 U1IR (USB Interrupt Status, Device Mode) .............. 224 U1IR (USB Interrupt Status, Host Mode).................. 225 U1OTGCON (USB OTG Control) ............................. 214 U1OTGIE (USB OTG Interrupt Enable, Host Mode) ....................................................... 223 U1OTGIR (USB OTG Interrupt Status, Host Mode) ....................................................... 222 U1OTGSTAT (USB OTG Status, Host Mode) .......... 213 U1PWMCON USB (VBUS PWM Generator Control)............................................................. 230 U1PWRC (USB Power Control)................................ 215 U1SOF (USB OTG Start-of-Token Threshold, Host Mode) ..................................... 220 U1STAT (USB Status) .............................................. 216 U1TOK (USB Token, Host Mode)............................. 219 UxMODE (UARTx Mode).......................................... 192 UxSTA (UARTx Status and Control)......................... 194 WKDYHR (RTCC Weekday and Hours Value)......... 247 YEAR (RTCC Year Value)........................................ 246 Reset, Power-up Timer and Brown-out Reset Timing Requirements................................................ 322 Resets BOR (Brown-out Reset).............................................. 63 Clock Source Selection............................................... 65 CM (Configuration Mismatch Reset)........................... 63 Delay Times................................................................ 66 Device Times .............................................................. 65 IOPUWR (Illegal Opcode Reset) ................................ 63 MCLR (Pin Reset)....................................................... 63 POR (Power-on Reset)............................................... 63 RCON Flags Operation............................................... 65 SFR States ................................................................. 67 SWR (RESET Instruction) .......................................... 63 TRAPR (Trap Conflict Reset) ..................................... 63 UWR (Uninitialized W Register Reset) ....................... 63 WDT (Watchdog Timer Reset) ................................... 63 Revision History................................................................ 341
DS39940D-page 346
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
RTCC Alarm Configuration .................................................. 250 Alarm Mask Settings (figure)..................................... 251 Calibration................................................................. 250 Register Mapping...................................................... 242 Selecting Clock Source............................................. 242 Source Clock............................................................. 241 Write Lock ................................................................. 242 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus Buffer Descriptors Assignment in Different Buffering Modes ......... 203 Interrupts and USB Transactions...................................... 207 Universal Serial Bus. See USB OTG. USB On-The-Go (OTG) ...................................................... 10 USB OTG Buffer Descriptors and BDT...................................... 202 Device Mode Operation............................................ 207 DMA Interface........................................................... 203 Hardware Configuration Device Mode..................................................... 199 External Interface ............................................. 201 Host and OTG Modes....................................... 200 Transceiver Power Requirements .................... 201 VBUS Voltage Generation ................................. 201 Host Mode Operation ............................................... 208 Interrupts .................................................................. 206 OTG Operation ......................................................... 210 Registers .......................................................... 212-230 VBUS Voltage Generation ......................................... 201
S
Selective Peripheral Power Control .................................. 125 Serial Peripheral Interface. See SPI. SFR Space.......................................................................... 34 Software Simulator (MPLAB SIM)..................................... 295 Software Stack .................................................................... 50 Special Features ................................................................. 10 SPI
T
Timer1 ............................................................................... 149 Timer2/3 and Timer4/5...................................................... 151 Timing Diagrams CLKO and I/O Timing................................................ 322 External Clock........................................................... 320 Trap Service Routine (TSR).............................................. 106 Triple Comparator ............................................................. 269
V
VDDCORE/VCAP Pin ........................................................... 287
U
UART ................................................................................ 189 Baud Rate Generator (BRG)..................................... 190 IrDA Support ............................................................. 191 Operation of UxCTS and UxRTS Pins ...................... 191 Receiving 8-Bit or 9-Bit Data Mode ................................... 191 Transmitting 8-Bit Data Mode ................................................ 191 9-Bit Data Mode ................................................ 191 Break and Sync Sequence ............................... 191
W
Watchdog Timer (WDT).................................................... 288 Control Register........................................................ 289 Windowed Operation ................................................ 289 WWW Address ................................................................. 348 WWW, On-Line Support ....................................................... 8
2010 Microchip Technology Inc.
DS39940D-page 347
PIC24FJ64GB004 FAMILY
NOTES:
DS39940D-page 348
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: * Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software * General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing * Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels: * * * * * Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com
CUSTOMER CHANGE NOTIFICATION SERVICE
Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.
2010 Microchip Technology Inc.
DS39940D-page 349
PIC24FJ64GB004 FAMILY
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: RE: Technical Publications Manager Reader Response Total Pages Sent ________
From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Literature Number: DS39940D FAX: (______) _________ - _________
Device: PIC24FJ64GB004 Family Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS39940D-page 350
2010 Microchip Technology Inc.
PIC24FJ64GB004 FAMILY
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PIC 24 FJ 64 GB0 04 T - I / PT - XXX Microchip Trademark Architecture Flash Memory Family Program Memory Size (KB) Product Group Pin Count Tape and Reel Flag (if applicable) Temperature Range Package Pattern
b)
Examples:
a) PIC24FJ64GB004-I/PT: PIC24F device with USB On-The-Go, 64-Kbyte program memory, 44-pin, Industrial temp.,TQFP package. PIC24FJ32GB002-I/ML: PIC24F device with USB On-The-Go, 32-Kbyte program memory, 28-pin, Industrial temp.,QFN package.
Architecture Flash Memory Family Product Group
24 FJ
= 16-bit modified Harvard without DSP = Flash program memory
GB0 = General purpose microcontrollers with USB On-The-Go 02 04 I E ML PT SO SP SS = 28-pin = 44-pin = -40C to +85C (Industrial) = -40C to +125C (Extended) = 28-lead (6x6 mm) or 44-lead (8x8 mm) QFN (Quad Flat) = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) = 28-lead 7.50 mm wide) SOIC (Small Outline) = 28-lead (300 mil) SPDIP (Skinny Plastic Dual In-Line) = 28-lead (530 mm) SSOP (Plastic Shrink Small)
Pin Count
Temperature Range Package
Pattern
Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample
2010 Microchip Technology Inc.
DS39940D-page 351
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
07/15/10
DS39940D-page 352
2010 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of PIC24FJ32GB002-EML

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X